The Prague Post - Sur la trace des plus grandes étoiles de l'Univers

EUR -
AED 4.313558
AFN 79.123718
ALL 96.942304
AMD 449.964277
ANG 2.10293
AOA 1077.068334
ARS 1733.746257
AUD 1.780981
AWG 1.65172
AZN 1.998059
BAM 1.955645
BBD 2.368612
BDT 143.118638
BGN 1.954338
BHD 0.443465
BIF 3509.921346
BMD 1.174557
BND 1.51028
BOB 8.126355
BRL 6.257453
BSD 1.176007
BTN 103.550779
BWP 15.665756
BYN 3.982084
BYR 23021.312332
BZD 2.365212
CAD 1.618715
CDF 3316.948727
CHF 0.92314
CLF 0.028606
CLP 1122.220907
CNY 8.355093
CNH 8.362363
COP 4581.536271
CRC 593.252902
CUC 1.174557
CUP 31.125754
CVE 110.256247
CZK 24.289132
DJF 209.423374
DKK 7.463958
DOP 72.914211
DZD 152.200273
EGP 55.910561
ERN 17.618351
ETB 168.7896
FJD 2.644869
FKP 0.870954
GBP 0.861459
GEL 3.171448
GGP 0.870954
GHS 14.430854
GIP 0.870954
GMD 86.916867
GNF 10201.190125
GTQ 9.008285
GYD 246.040467
HKD 9.132942
HNL 30.822553
HRK 7.534194
HTG 153.877784
HUF 390.404784
IDR 19549.028935
ILS 3.918562
IMP 0.870954
INR 103.477687
IQD 1540.677685
IRR 49404.825949
ISK 143.002477
JEP 0.870954
JMD 188.585028
JOD 0.832706
JPY 173.74629
KES 151.877942
KGS 102.715017
KHR 4726.624752
KMF 490.965069
KPW 1057.125942
KRW 1641.126393
KWD 0.358721
KYD 0.980022
KZT 636.629458
LAK 25461.978567
LBP 105312.539211
LKR 355.601769
LRD 209.923334
LSL 20.40328
LTL 3.468161
LVL 0.710478
LYD 6.342496
MAD 10.608658
MDL 19.510451
MGA 5199.587203
MKD 61.530115
MMK 2466.010659
MNT 4224.04733
MOP 9.419052
MRU 47.041265
MUR 53.266356
MVR 17.970298
MWK 2039.238104
MXN 21.617127
MYR 4.941351
MZN 75.052237
NAD 20.40328
NGN 1756.643804
NIO 43.276564
NOK 11.675561
NPR 165.680847
NZD 1.985223
OMR 0.451619
PAB 1.176007
PEN 4.096675
PGK 4.91561
PHP 66.886892
PKR 333.724905
PLN 4.263727
PYG 8374.335159
QAR 4.275961
RON 5.075847
RSD 117.150699
RUB 98.182205
RWF 1704.664666
SAR 4.405169
SBD 9.627676
SCR 17.900779
SDG 706.532839
SEK 11.053632
SGD 1.507071
SHP 0.923017
SLE 27.368589
SLL 24629.872108
SOS 672.046646
SRD 44.746502
STD 24310.953338
STN 24.498055
SVC 10.290183
SYP 15271.480209
SZL 20.40538
THB 37.403736
TJS 11.007526
TMT 4.110949
TND 3.421528
TOP 2.750928
TRY 48.532436
TTD 7.959368
TWD 35.508039
TZS 2901.86962
UAH 48.583443
UGX 4118.673018
USD 1.174557
UYU 46.976271
UZS 14481.850282
VES 191.972897
VND 30987.7435
VUV 139.615359
WST 3.140511
XAF 655.904928
XAG 0.027265
XAU 0.000319
XCD 3.174298
XCG 2.119432
XDR 0.815735
XOF 655.904928
XPF 119.331742
YER 281.247205
ZAR 20.369492
ZMK 10572.426855
ZMW 27.806792
ZWL 378.206795
  • AEX

    -3.3600

    929.94

    -0.36%

  • BEL20

    10.8100

    4709.11

    +0.23%

  • PX1

    -0.7900

    7853.59

    -0.01%

  • ISEQ

    -35.8800

    11176.65

    -0.32%

  • OSEBX

    -5.6100

    1645.65

    -0.34%

  • PSI20

    -21.6300

    7704.09

    -0.28%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    33.2300

    3494.96

    +0.96%

  • N150

    -13.5900

    3659.77

    -0.37%

Sur la trace des plus grandes étoiles de l'Univers
Sur la trace des plus grandes étoiles de l'Univers / Photo: - - ESA/HUBBLE/AFP

Sur la trace des plus grandes étoiles de l'Univers

Elles ont illuminé le cosmos naissant avec la lumière de millions de Soleil et pour la première fois des astronomes ont détecté la trace chimique d'étoiles supermassives, des "monstres célestes" dans une galaxie apparue il y a plus de 10 milliards d'années.

Taille du texte:

"Nous pensons avoir trouvé un premier indice de la présence de ces étoiles extraordinaires", a annoncé Corinne Charbonnel, professeure d'astronomie à l'Université de Genève dans un communiqué. Le superlatif n'est pas volé pour décrire des astres hors-normes, jusqu'ici uniquement théorisés.

L'étoile la plus massive observée à ce jour a une masse équivalente à celle d'un peu plus de 300 Soleils. Celle décrite dans l'étude parue dans l'édition de mai d'Astronomy & Astrophysics la laisse loin derrière, avec une masse estimée entre 5.000 et 10.000 fois celle du Soleil.

L'équipe menée par l'astrophysicienne, avec des scientifiques des Universités de Genève et Barcelone et de l'Institut d'astrophysique de Paris, avait théorisé leur existence en 2018 pour expliquer une énigme de l'astronomie: la grande diversité de composition des étoiles dans les amas globulaires.

Généralement très vieux, ces amas concentrent plusieurs millions d'étoiles dans un volume réduit. Les progrès de l'astronomie en dévoilent un nombre croissant, comme une sorte de "chaînon manquant" entre les premières étoiles et les premières galaxies. Notre voie lactée, qui contient plus de cent milliards d'étoiles, compte environ 180 amas globulaires, rappelle le communiqué de l'Université de Genève.

L'énigme repose sur le fait que bon nombre des étoiles de ces amas contiennent des éléments exigeant des températures colossales pour être produits, jusqu'à 70 millions de degrés pour l'aluminium. Des températures bien supérieures à celles que les étoiles atteignent dans leur cœur, au maximum 15 à 20 millions de degrés -comme notre Soleil.

La solution proposée est celle d'une "pollution" par une étoile supermassive jeune, seule à même d'atteindre une température aussi extrême. Les scientifiques imaginent que de telles étoiles supermassives sont nées par collisions successives dans l'espace restreint et très dense de l'amas.

- Une "étoile-graine" -

Une "espèce d'étoile-graine va engloutir de plus en plus d'étoiles", explique Mme Charbonnel à l'AFP. Et devenir "comme un immense réacteur nucléaire, continuellement alimenté en matière et qui va en éjecter beaucoup" dans l'amas. Cette matière va alimenter les jeunes étoiles en formation, en proportion de "leur proximité avec l'étoile supermassive".

Restait à trouver une preuve du phénomène. L'équipe l'a dénichée dans une galaxie des premiers âges de l'Univers, GN-Z11.

Découverte en 2015 par un collègue de Corinne Charbonnel, cette galaxie parmi les plus distantes observées, à plus de 13 milliards d'années lumière, et donc une des plus anciennes, existait déjà 440 millions d'années après le Big Bang.

Découverte avec le télescope spatial Hubble, l'observation de cette minuscule tache rouge avec son successeur James-Webb a livré deux indices clés: une très forte densité d'étoiles et surtout beaucoup d'azote. Un élément dont la présence ne peut s'expliquer dans de telles proportions que par la combustion d'hydrogène à des températures extrêmes. Un phénomène qui ne peut se produire que dans une étoile supermassive.

Si l'équipe tenait avec sa théorie "comme une espèce de trace de pas de notre étoile supermassive, là c'est un peu comme si on avait trouvé un os", reprend Mme Charbonnel: "Et on spécule sur la tête de la bête derrière tout ça...".

L'espoir d'en observer une un jour est mince. Les scientifiques estiment l'espérance de vie d'une étoile supermassive autour de deux millions d'années, un clin d'œil dans les échelles de temps cosmique.

Mais ils soupçonnent qu'elles pourraient être apparues dans des amas globulaires jusqu'il y a encore deux milliards d'années, soit relativement récemment. Et donc y laisser une trace permettant de mieux les cerner.

S.Danek--TPP