The Prague Post - Japan sees bright future for ultra-thin, flexible solar panels

EUR -
AED 4.26841
AFN 80.362394
ALL 97.542216
AMD 446.735356
ANG 2.080099
AOA 1065.794205
ARS 1481.767207
AUD 1.776887
AWG 2.092071
AZN 1.980459
BAM 1.954642
BBD 2.348809
BDT 141.226338
BGN 1.956132
BHD 0.43834
BIF 3466.946195
BMD 1.162261
BND 1.493215
BOB 8.038238
BRL 6.486005
BSD 1.163311
BTN 100.147673
BWP 15.618748
BYN 3.807045
BYR 22780.325028
BZD 2.336716
CAD 1.596076
CDF 3354.287055
CHF 0.932981
CLF 0.029194
CLP 1120.296341
CNY 8.342655
CNH 8.346165
COP 4674.330945
CRC 587.052233
CUC 1.162261
CUP 30.799929
CVE 110.199718
CZK 24.634179
DJF 206.947405
DKK 7.463699
DOP 70.258379
DZD 151.514244
EGP 57.439973
ERN 17.433922
ETB 161.636047
FJD 2.620788
FKP 0.864949
GBP 0.86668
GEL 3.150183
GGP 0.864949
GHS 12.127816
GIP 0.864949
GMD 83.106172
GNF 10094.020343
GTQ 8.931709
GYD 243.385819
HKD 9.117884
HNL 30.445964
HRK 7.532663
HTG 152.739518
HUF 398.923459
IDR 18977.696027
ILS 3.902549
IMP 0.864949
INR 100.127437
IQD 1523.897249
IRR 48945.741055
ISK 142.354235
JEP 0.864949
JMD 186.029797
JOD 0.824089
JPY 172.932309
KES 150.300962
KGS 101.640213
KHR 4662.238109
KMF 491.989694
KPW 1046.046309
KRW 1616.942576
KWD 0.355234
KYD 0.969426
KZT 620.152624
LAK 25087.138481
LBP 104232.653
LKR 350.972086
LRD 233.241828
LSL 20.596898
LTL 3.431856
LVL 0.703041
LYD 6.327252
MAD 10.519168
MDL 19.788278
MGA 5176.933206
MKD 61.523554
MMK 2439.678938
MNT 4168.013035
MOP 9.404829
MRU 46.275587
MUR 53.119698
MVR 17.903172
MWK 2017.205016
MXN 21.795313
MYR 4.935007
MZN 74.338683
NAD 20.596898
NGN 1779.387897
NIO 42.814637
NOK 11.840776
NPR 160.236077
NZD 1.945045
OMR 0.446995
PAB 1.163311
PEN 4.140847
PGK 4.817146
PHP 66.377189
PKR 331.310933
PLN 4.244785
PYG 9003.666265
QAR 4.229694
RON 5.072695
RSD 117.080642
RUB 91.375869
RWF 1681.00418
SAR 4.36165
SBD 9.64543
SCR 17.082281
SDG 697.942292
SEK 11.235354
SGD 1.492813
SHP 0.913355
SLE 26.62005
SLL 24372.046713
SOS 664.806172
SRD 43.245469
STD 24056.466061
STN 24.485495
SVC 10.17897
SYP 15112.803405
SZL 20.592801
THB 37.628259
TJS 11.196867
TMT 4.079538
TND 3.419874
TOP 2.722137
TRY 46.897678
TTD 7.897322
TWD 34.181766
TZS 3030.404801
UAH 48.58252
UGX 4168.530579
USD 1.162261
UYU 46.882227
UZS 14725.276806
VES 135.943958
VND 30404.760344
VUV 138.92149
WST 3.080055
XAF 655.568644
XAG 0.030448
XAU 0.000347
XCD 3.14107
XCG 2.096558
XDR 0.815317
XOF 655.568644
XPF 119.331742
YER 280.163552
ZAR 20.584139
ZMK 10461.752209
ZMW 26.785133
ZWL 374.247723
  • CMSC

    0.0900

    22.314

    +0.4%

  • CMSD

    0.0250

    22.285

    +0.11%

  • RBGPF

    0.0000

    69.04

    0%

  • SCS

    0.0400

    10.74

    +0.37%

  • RELX

    0.0300

    53

    +0.06%

  • RIO

    -0.1400

    59.33

    -0.24%

  • GSK

    0.1300

    41.45

    +0.31%

  • NGG

    0.2700

    71.48

    +0.38%

  • BP

    0.1750

    30.4

    +0.58%

  • BTI

    0.7150

    48.215

    +1.48%

  • BCC

    0.7900

    91.02

    +0.87%

  • JRI

    0.0200

    13.13

    +0.15%

  • VOD

    0.0100

    9.85

    +0.1%

  • BCE

    -0.0600

    22.445

    -0.27%

  • RYCEF

    0.1000

    12

    +0.83%

  • AZN

    -0.1200

    73.71

    -0.16%

Japan sees bright future for ultra-thin, flexible solar panels
Japan sees bright future for ultra-thin, flexible solar panels / Photo: Kazuhiro NOGI - AFP

Japan sees bright future for ultra-thin, flexible solar panels

Japan is heavily investing in a new kind of ultra-thin, flexible solar panel that it hopes will help it meet renewable energy goals while challenging China's dominance of the sector.

Text size:

Pliable perovskite panels are perfect for mountainous Japan, with its shortage of flat plots for traditional solar farms. And a key component of the panels is iodine, something Japan produces more of than any country but Chile.

The push faces some obstacles: perovskite panels contain toxic lead, and, for now, produce less power and have shorter lifespans than their silicon counterparts.

Still, with a goal of net-zero by 2050 and a desire to break China's solar supremacy, perovskite cells are "our best card to achieve both decarbonisation and industrial competitiveness," minister of industry Yoji Muto said in November.

"We need to succeed in their implementation in society at all costs," he said.

The government is offering generous incentives to get industry on board, including a 157-billion-yen ($1 billion) subsidy to plastic maker Sekisui Chemical for a factory to produce enough perovskite solar panels to generate 100 megawatts by 2027, enough to power 30,000 households.

By 2040, Japan wants to install enough perovskite panels to generate 20 gigawatts of electricity, equivalent to adding about 20 nuclear reactors.

That should help Japan's target to have renewable energy cover up to 50 percent of electricity demand by 2040.

- Breaking the silicon ceiling -

The nation is looking to solar power, including perovskite and silicon-based solar cells, to cover up to 29 percent of all electricity demand by that time, a sharp rise from 9.8 percent in 2023.

"To increase the amount of renewable energy and achieve carbon neutrality, I think we will have to mobilise all the technologies available," said Hiroshi Segawa, a specialist in next-generation solar technology at the University of Tokyo.

"Perovskite solar panels can be built domestically, from the raw materials to production to installation. In that sense, they could significantly contribute to things like energy security and economic security," he told AFP.

Tokyo wants to avoid a repeat of the past boom and bust of the Japanese solar business.

In the early 2000s, Japanese-made silicon solar panels accounted for almost half the global market.

Now, China controls more than 80 percent of the global solar supply chain, from the production of key raw material to assembling modules.

Silicon solar panels are made of thin wafers that are processed into cells that generate electricity.

They must be protected by reinforced glass sheets and metal frames, making the final products heavy and cumbersome.

Perovskite solar cells, however, are created by printing or painting ingredients such as iodine and lead onto surfaces like film or sheet glass.

The final product can be just a millimetre thick and a tenth the weight of a conventional silicon solar cell.

Perovskite panels' malleability means they can be installed on uneven and curved surfaces, a key feature in Japan, where 70 percent of the country is mountainous.

- Generating where power is used -

The panels are already being incorporated into several projects, including a 46-storey Tokyo building to be completed by 2028.

The southwestern city of Fukuoka has also said it wants to cover a domed baseball stadium with perovskite panels.

And major electronics brand Panasonic is working on integrating perovskite into windowpanes.

"What if all of these windows had solar cells integrated in them?" said Yukihiro Kaneko, general manager of Panasonic's perovskite PV development department, gesturing to the glass-covered high-rise buildings surrounding the firm's Tokyo office.

That would allow power to be generated where it is used, and reduce the burden on the national grid, Kaneko added.

For all the enthusiasm, perovskite panels remain far from mass production.

They are less efficient than their silicon counterparts, and have a lifespan of just a decade, compared to 30 years for conventional units.

The toxic lead they contain also means they need careful disposal after use.

However, the technology is advancing fast. Some prototypes can perform nearly as powerfully as silicon panels and their durability is expected to reach 20 years soon.

University professor Segawa believes Japan could have a capacity of 40 gigawatts from perovskite by 2040, while the technology could also speed up renewable uptake elsewhere.

"We should not think of it as either silicon or perovskite. We should look at how we can maximise our ability to utilise renewable energy," Segawa said.

"If Japan could show a good model, I think it can be brought overseas."

I.Horak--TPP