The Prague Post - Spinal cord implant helps paralysed patients walk again

EUR -
AED 4.243687
AFN 80.258579
ALL 97.948265
AMD 440.592197
ANG 2.067962
AOA 1058.465478
ARS 1362.804464
AUD 1.778285
AWG 2.082842
AZN 1.968988
BAM 1.955765
BBD 2.322859
BDT 140.58751
BGN 1.96051
BHD 0.433992
BIF 3425.439333
BMD 1.15553
BND 1.477574
BOB 7.949859
BRL 6.406145
BSD 1.15048
BTN 98.998247
BWP 15.463726
BYN 3.764933
BYR 22648.378878
BZD 2.310959
CAD 1.569961
CDF 3324.458889
CHF 0.938796
CLF 0.027884
CLP 1070.051049
CNY 8.298556
CNH 8.307576
COP 4778.715365
CRC 579.88973
CUC 1.15553
CUP 30.621533
CVE 110.263047
CZK 24.84493
DJF 204.866372
DKK 7.461301
DOP 67.948797
DZD 150.258339
EGP 57.438983
ERN 17.332943
ETB 155.208151
FJD 2.59792
FKP 0.851372
GBP 0.852443
GEL 3.166602
GGP 0.851372
GHS 11.84979
GIP 0.851372
GMD 81.469282
GNF 9968.823444
GTQ 8.840843
GYD 240.695737
HKD 9.070231
HNL 30.026468
HRK 7.537177
HTG 150.877328
HUF 402.707866
IDR 18834.322544
ILS 4.183484
IMP 0.851372
INR 99.58874
IQD 1507.073308
IRR 48647.793814
ISK 144.037202
JEP 0.851372
JMD 184.196738
JOD 0.819316
JPY 166.518785
KES 148.637368
KGS 101.051502
KHR 4612.918301
KMF 492.837731
KPW 1039.976573
KRW 1579.771091
KWD 0.353847
KYD 0.958683
KZT 590.089549
LAK 24822.560372
LBP 103080.774354
LKR 344.473899
LRD 230.095925
LSL 20.704233
LTL 3.411979
LVL 0.698969
LYD 6.285889
MAD 10.518914
MDL 19.701651
MGA 5194.907994
MKD 61.53391
MMK 2426.268419
MNT 4138.767016
MOP 9.301035
MRU 45.673191
MUR 52.588586
MVR 17.800977
MWK 1994.864669
MXN 21.898152
MYR 4.905805
MZN 73.89655
NAD 20.704233
NGN 1782.335411
NIO 42.33925
NOK 11.454538
NPR 158.397195
NZD 1.920457
OMR 0.444022
PAB 1.15048
PEN 4.152526
PGK 4.805915
PHP 64.814084
PKR 326.153924
PLN 4.273513
PYG 9179.837417
QAR 4.196726
RON 5.027136
RSD 117.197924
RUB 92.187067
RWF 1661.270578
SAR 4.337388
SBD 9.645657
SCR 16.420505
SDG 693.899733
SEK 10.959036
SGD 1.481278
SHP 0.908065
SLE 25.479855
SLL 24230.88081
SOS 657.488355
SRD 43.364756
STD 23917.128362
SVC 10.066822
SYP 15024.024763
SZL 20.690634
THB 37.444978
TJS 11.619594
TMT 4.044353
TND 3.40414
TOP 2.70637
TRY 45.531654
TTD 7.801862
TWD 34.111657
TZS 2973.947329
UAH 47.720955
UGX 4145.926572
USD 1.15553
UYU 47.299162
UZS 14617.741108
VES 118.057029
VND 30130.432615
VUV 137.626073
WST 3.026547
XAF 655.945383
XAG 0.031814
XAU 0.000336
XCD 3.122877
XDR 0.815786
XOF 655.945383
XPF 119.331742
YER 281.198532
ZAR 20.713272
ZMK 10401.156591
ZMW 27.812507
ZWL 372.080039
  • CMSC

    0.0900

    22.314

    +0.4%

  • CMSD

    0.0250

    22.285

    +0.11%

  • RBGPF

    0.0000

    69.04

    0%

  • SCS

    0.0400

    10.74

    +0.37%

  • RELX

    0.0300

    53

    +0.06%

  • RIO

    -0.1400

    59.33

    -0.24%

  • GSK

    0.1300

    41.45

    +0.31%

  • NGG

    0.2700

    71.48

    +0.38%

  • BP

    0.1750

    30.4

    +0.58%

  • BTI

    0.7150

    48.215

    +1.48%

  • BCC

    0.7900

    91.02

    +0.87%

  • JRI

    0.0200

    13.13

    +0.15%

  • VOD

    0.0100

    9.85

    +0.1%

  • BCE

    -0.0600

    22.445

    -0.27%

  • RYCEF

    0.1000

    12

    +0.83%

  • AZN

    -0.1200

    73.71

    -0.16%

Spinal cord implant helps paralysed patients walk again
Spinal cord implant helps paralysed patients walk again

Spinal cord implant helps paralysed patients walk again

In 2017, Michel Roccati was in a motorbike accident that left his lower body completely paralysed. In 2020, he walked again, thanks to a breakthrough new spinal cord implant.

Text size:

The implant sends electrical pulses to his muscles, mimicking the action of the brain, and could one day help people with severe spinal injuries stand, walk and exercise.

It builds on long-running research using electrical pulses to improve the quality of life for people with spinal cord injuries, including a 2018 study by the same team that helped people with partial lower-body paralysis walk again.

"It was a very emotional experience," Roccati told journalists of the first time the electrical pulses were activated and he took a step.

He was one of three patients involved in the study, published Monday in the journal Nature Medicine, all of them unable to move their lower bodies after accidents.

The three were able to take steps shortly after the six-centimetre implant was inserted and its pulses were fine-tuned.

"These electrodes were longer and larger than the ones we had previously implanted, and we could access more muscles thanks to this new technology," said Jocelyne Bloch, a neurosurgeon at the Lausanne University Hospital who helped lead the trial.

Those initial steps, while breathtaking for the researchers and their patients, were difficult and required support bars and significant upper body strength.

But the patients could start rehabilitation immediately, and within four months Roccati could walk with only a frame for balance.

"It's not that it's a miracle right away, not by far," cautioned Gregoire Courtine, a neuroscientist at the Swiss Federal Institute of Technology who led the research with Bloch.

But with practice, Roccati can now stand for several hours and walk nearly a kilometre. The Italian described being able to look clients in the eye, have a drink at a standing table and take a shower standing up thanks to the implant.

He and others in the trial were also able to climb stairs, swim and canoe.

- 'I see the improvement' -

The improvements depend on the electrical stimulation, which is triggered via a computer carried by the patient that activates a pattern of pulses.

Two of the patients can now activate their muscles slightly without electrical pulses, but only minimally.

By comparison, some patients with partial lower body paralysis treated in an earlier study are able to move their previously immobile legs and stand without stimulation.

The three men in the new trial were all injured at least a year before the implant and Bloch hopes to trial the technology sooner after an accident.

"What we all think is that if you try earlier it will have more effect," she said.

There are challenges: in early recovery, a patient's capacity is still in flux, making it hard to set a baseline from which to measure progress, and ongoing medical treatment and pain could hamper rehabilitation.

So far, the implants are also only suitable for those with an injury above the lower thoracic spinal cord, the section running from the base of the neck to the abdomen, because six centimetres of healthy spinal cord is needed.

The idea of using electrical pulses to address paralysis stemmed from technology used to regulate pain, and the researchers said they see scope for further applications.

They have also shown it can regulate low blood pressure in spinal cord injury patients and plan to soon release a study on its use for severe Parkinson's disease.

The team cautioned that significant work remains before the implant is available for treatment outside clinical studies, but said they receive around five messages a day from patients seeking help.

They next plan to miniaturise the computer controlling the pulses so it can be implanted in patients and controlled with a smartphone.

They expect this to be possible this year, and have plans for large-scale trials involving 50-100 patients in the United States and then Europe.

Roccati said he activates the implant daily at home and continues to get stronger.

"I see the improvement every day," he said.

"I feel better when I use it."

I.Mala--TPP