The Prague Post - France taps nuclear know-how to recycle electric car batteries

EUR -
AED 4.309924
AFN 79.974243
ALL 96.943022
AMD 448.467719
ANG 2.101155
AOA 1076.160019
ARS 1701.464628
AUD 1.778669
AWG 2.112418
AZN 1.99972
BAM 1.955659
BBD 2.36313
BDT 142.789722
BGN 1.956941
BHD 0.442268
BIF 3501.547958
BMD 1.173566
BND 1.505192
BOB 8.107416
BRL 6.274356
BSD 1.173316
BTN 103.49655
BWP 15.629875
BYN 3.974114
BYR 23001.884322
BZD 2.35973
CAD 1.625799
CDF 3327.058693
CHF 0.934992
CLF 0.028565
CLP 1116.249652
CNY 8.361307
CNH 8.360974
COP 4566.871276
CRC 591.057456
CUC 1.173566
CUP 31.099486
CVE 110.257064
CZK 24.324263
DJF 208.934961
DKK 7.46464
DOP 74.384646
DZD 151.793074
EGP 56.346944
ERN 17.603483
ETB 168.466974
FJD 2.627266
FKP 0.866426
GBP 0.865653
GEL 3.15735
GGP 0.866426
GHS 14.31397
GIP 0.866426
GMD 83.914454
GNF 10176.267511
GTQ 8.995353
GYD 245.472331
HKD 9.128233
HNL 30.739787
HRK 7.534765
HTG 153.528949
HUF 390.89166
IDR 19255.745805
ILS 3.914974
IMP 0.866426
INR 103.599842
IQD 1537.08936
IRR 49377.769947
ISK 143.234125
JEP 0.866426
JMD 188.216452
JOD 0.832104
JPY 173.328633
KES 151.589089
KGS 102.628756
KHR 4702.661502
KMF 492.315191
KPW 1056.153297
KRW 1634.812435
KWD 0.358372
KYD 0.97783
KZT 634.444333
LAK 25441.168742
LBP 105070.437021
LKR 354.014518
LRD 208.265009
LSL 20.363334
LTL 3.465234
LVL 0.709879
LYD 6.335544
MAD 10.566139
MDL 19.488597
MGA 5199.62573
MKD 61.535571
MMK 2463.819115
MNT 4223.953258
MOP 9.405523
MRU 46.838629
MUR 53.374204
MVR 17.967732
MWK 2034.45356
MXN 21.64067
MYR 4.934889
MZN 75.003016
NAD 20.363334
NGN 1763.051862
NIO 43.176892
NOK 11.571478
NPR 165.594081
NZD 1.970062
OMR 0.449868
PAB 1.173316
PEN 4.089006
PGK 4.972642
PHP 67.093181
PKR 333.121922
PLN 4.256594
PYG 8384.39649
QAR 4.283192
RON 5.066327
RSD 117.131569
RUB 98.288025
RWF 1700.177621
SAR 4.402641
SBD 9.631311
SCR 16.690799
SDG 705.903978
SEK 10.93388
SGD 1.507332
SHP 0.922238
SLE 27.432139
SLL 24609.086612
SOS 670.551734
SRD 46.209187
STD 24290.436982
STN 24.498237
SVC 10.266261
SYP 15258.141087
SZL 20.343536
THB 37.214196
TJS 11.040905
TMT 4.119215
TND 3.415554
TOP 2.748612
TRY 48.49936
TTD 7.977426
TWD 35.558923
TZS 2886.392237
UAH 48.371218
UGX 4123.703175
USD 1.173566
UYU 46.996617
UZS 14604.948735
VES 186.280467
VND 30964.526421
VUV 139.400507
WST 3.142011
XAF 655.909788
XAG 0.027822
XAU 0.000322
XCD 3.17162
XCG 2.114648
XDR 0.815741
XOF 655.909788
XPF 119.331742
YER 281.128048
ZAR 20.406087
ZMK 10563.502225
ZMW 27.836996
ZWL 377.887621
  • RBGPF

    0.0000

    77.27

    0%

  • BCC

    -3.3300

    85.68

    -3.89%

  • NGG

    0.5300

    71.6

    +0.74%

  • GSK

    -0.6500

    40.83

    -1.59%

  • BCE

    -0.1400

    24.16

    -0.58%

  • RYCEF

    0.1800

    15.37

    +1.17%

  • CMSC

    -0.0200

    24.36

    -0.08%

  • RIO

    -0.1000

    62.44

    -0.16%

  • RELX

    0.1700

    46.5

    +0.37%

  • JRI

    0.1100

    14.23

    +0.77%

  • AZN

    -1.5400

    79.56

    -1.94%

  • VOD

    -0.0100

    11.85

    -0.08%

  • BP

    -0.5800

    33.89

    -1.71%

  • SCS

    -0.1900

    16.81

    -1.13%

  • CMSD

    0.0100

    24.4

    +0.04%

  • BTI

    -0.7200

    56.59

    -1.27%

France taps nuclear know-how to recycle electric car batteries
France taps nuclear know-how to recycle electric car batteries / Photo: Pascal GUYOT - AFP

France taps nuclear know-how to recycle electric car batteries

In the cradle of France's atomic programme, researchers are using their nuclear know-how for a key project in the country's energy transition: recycling the raw materials in old electric car batteries, solar panels and wind turbines.

Text size:

The European Union has made building up its recycling capacity a key part of its strategy to become less reliant on Asia for critical metals such as lithium, nickel and silver.

The 27-nation bloc is trying to close the gap with China, which already recycles car batteries and has its own massive reserves of raw materials and refining capacity.

Reusing old components could help countries such as France, which do not have mines and rely on imports, narrow the gap.

The French atomic and alternative energy commission (CEA) is using its research facility in the southern centre of Marcoule to find ways to recycle the components used for clean technologies.

The sprawling campus, where France's nuclear weapons and energy programmes were born, is so sensitive that images of its location are blurred out or pixelated on Google Maps.

But the CEA gave reporters a rare tour to show off its recycling work ahead of a conference on critical metals to be hosted by the International Energy Agency (IEA) in Paris on Thursday.

Many of the techniques used by Marcoule researchers come from their knowhow in recycling nuclear waste, an area in which France is a world leader.

The goal is to recover the materials and use them on an industrial scale, said Richard Laucournet, head of the new materials department at the CEA centre.

"We are looking at how to store, convert and transport electricity, and how to make the energy transition efficient," said Laucournet.

"Thanks to the simulation tools developed here, we can reprocess rare earths from magnets."

- Black mass -

In one lab, researchers peer into a metre-thick window as they operate large, bike handle-like robotic arms to cut out irradiated fuel rods.

The alloy sections are placed in hot acid solutions to make the metal dissolve. Afterwards it can be extracted again via the use of organic solvents and decanters.

The process can recover lithium, nickel, cobalt and graphite from the black mass that comes from crushing the automobile electric battery cells.

Researchers say the technique developed at Marcoule will be useful for recycling fuels from future fourth-generation nuclear reactors as well as rare earths from magnets.

This technology is all the more useful since there is "no real magnet recycling sector" in the world except scrap in Asia, said Laucournet.

Another technique at the centre is to use carbon dioxide to detach and inflate solar panel cells, allowing the recovery of silicon and the silver contained inside.

For wind turbine blades, the CEA is applying the same process with "supercritical water" that it has been working on for 20 years in a bid to remove radioactivity from metals in a liquid state.

Supercritical water at very high temperature and high pressure has the power to penetrate inside the materials and to break the polymer chains of the fibreglass or carbon composites that make up wind turbine blades and hydrogen tanks.

- Nuclear waste -

The CEA is also working on the possibility of extracting critical rare materials from radioactive waste.

"It contains very rare and very expensive metals, generated by the nuclear reaction itself," including palladium, rhodium or ruthenium, said Philippe Prene, circular economy manager for low-carbon energies at the CEA.

The materials include palladium, rhodium and ruthenium, all of which can be used as catalysts in the electrolysis of water to produce hydrogen.

"We started studies to extract them and it works," Prene said.

He added that recycled materials could one day account for 35 percent of Europe's needs to become self-sufficient to make batteries.

But he warned that "in no case" will such recycling make France and Europe completely self-reliant.

K.Dudek--TPP