The Prague Post - Webb telescope discovers oldest black hole yet

EUR -
AED 4.343054
AFN 77.464136
ALL 96.578481
AMD 443.001294
ANG 2.116924
AOA 1084.432259
ARS 1696.425045
AUD 1.722632
AWG 2.13043
AZN 2.015092
BAM 1.955364
BBD 2.363473
BDT 143.548016
BGN 1.986001
BHD 0.445401
BIF 3475.425631
BMD 1.182587
BND 1.500966
BOB 8.109193
BRL 6.256361
BSD 1.173439
BTN 107.717999
BWP 16.277373
BYN 3.32206
BYR 23178.695489
BZD 2.360074
CAD 1.622687
CDF 2578.039008
CHF 0.922409
CLF 0.026073
CLP 1029.489324
CNY 8.24689
CNH 8.21806
COP 4228.657801
CRC 580.770597
CUC 1.182587
CUP 31.338542
CVE 110.240437
CZK 24.267271
DJF 208.973438
DKK 7.466899
DOP 73.933527
DZD 153.154875
EGP 55.759418
ERN 17.738798
ETB 182.791072
FJD 2.661179
FKP 0.870315
GBP 0.866681
GEL 3.18162
GGP 0.870315
GHS 12.79115
GIP 0.870315
GMD 86.329235
GNF 10278.709772
GTQ 9.006993
GYD 245.515296
HKD 9.251143
HNL 30.954103
HRK 7.533317
HTG 153.905708
HUF 382.153287
IDR 19840.785951
ILS 3.707232
IMP 0.870315
INR 108.414214
IQD 1537.357457
IRR 49816.456691
ISK 145.777895
JEP 0.870315
JMD 184.718842
JOD 0.838501
JPY 184.134678
KES 151.256298
KGS 103.416722
KHR 4722.947667
KMF 496.686746
KPW 1064.353704
KRW 1710.44627
KWD 0.362349
KYD 0.977982
KZT 590.738376
LAK 25359.349612
LBP 105085.885516
LKR 363.548997
LRD 217.091629
LSL 18.94048
LTL 3.491871
LVL 0.715335
LYD 7.466336
MAD 10.748905
MDL 19.97255
MGA 5308.817127
MKD 61.616271
MMK 2483.187819
MNT 4218.830116
MOP 9.4253
MRU 46.916546
MUR 54.292994
MVR 18.271409
MWK 2034.84661
MXN 20.533372
MYR 4.736855
MZN 75.57955
NAD 18.94048
NGN 1680.526824
NIO 43.180379
NOK 11.555294
NPR 172.348599
NZD 1.987207
OMR 0.454249
PAB 1.173539
PEN 3.936823
PGK 5.018882
PHP 69.733624
PKR 328.342141
PLN 4.208885
PYG 7847.251532
QAR 4.278347
RON 5.101724
RSD 117.373848
RUB 89.207823
RWF 1711.518652
SAR 4.430113
SBD 9.606873
SCR 16.856244
SDG 711.330129
SEK 10.584272
SGD 1.505082
SHP 0.887246
SLE 28.859447
SLL 24798.24684
SOS 669.450838
SRD 45.081425
STD 24477.153012
STN 24.494542
SVC 10.267712
SYP 13078.904017
SZL 18.935781
THB 36.920787
TJS 10.972155
TMT 4.139053
TND 3.416239
TOP 2.847384
TRY 51.246799
TTD 7.971224
TWD 37.116428
TZS 3004.130641
UAH 50.599026
UGX 4148.075755
USD 1.182587
UYU 44.440098
UZS 14242.826515
VES 416.584326
VND 31036.982812
VUV 141.661813
WST 3.258757
XAF 655.810877
XAG 0.011483
XAU 0.000237
XCD 3.196
XCG 2.114929
XDR 0.815618
XOF 655.810877
XPF 119.331742
YER 281.814608
ZAR 19.0597
ZMK 10644.701884
ZMW 23.02187
ZWL 380.792372
  • RBGPF

    -0.8100

    83.23

    -0.97%

  • GSK

    0.5000

    49.15

    +1.02%

  • VOD

    0.2300

    14.17

    +1.62%

  • NGG

    1.3200

    81.5

    +1.62%

  • CMSC

    0.1000

    23.75

    +0.42%

  • RELX

    0.0600

    39.9

    +0.15%

  • SCS

    0.0200

    16.14

    +0.12%

  • AZN

    1.2600

    92.95

    +1.36%

  • BTI

    0.9400

    59.16

    +1.59%

  • RYCEF

    0.3000

    17.12

    +1.75%

  • BP

    1.1000

    36.53

    +3.01%

  • CMSD

    0.0900

    24.13

    +0.37%

  • RIO

    3.1300

    90.43

    +3.46%

  • JRI

    0.0100

    13.68

    +0.07%

  • BCE

    0.4900

    25.2

    +1.94%

  • BCC

    -1.1800

    84.33

    -1.4%

Webb telescope discovers oldest black hole yet
Webb telescope discovers oldest black hole yet / Photo: Handout - NASA/AFP

Webb telescope discovers oldest black hole yet

The James Webb space telescope has discovered the oldest black hole ever detected, which was thriving so soon after the Big Bang that it challenges our understanding of how these celestial behemoths form, astronomers said Wednesday.

Text size:

The black hole was vigorously gobbling up its host galaxy just 430 million years after the birth of the universe during a period called the cosmic dawn, according to a study in the journal Nature.

That makes it 200 million years older than any other massive black hole ever observed, study co-author and Cambridge University astronomer Jan Scholtz told AFP.

Yet it has a mass 1.6 million times greater than our Sun.

Exactly how it had time to grow that big so quickly after the Big Bang 13.8 billion years ago will provide new information "for the next generation of theoretical models" aiming to explain what creates black holes, Scholtz said.

Like all black holes, it is invisible and can only be detected by the vast explosions of light created when it gobbles up whatever matter is unlucky enough to be nearby.

It was this light that allowed the Hubble space telescope in 2016 to spot its host galaxy GN-z11, which is in the direction of the Ursa Major constellation.

At the time GN-z11 was the oldest -- and therefore most distant -- galaxy ever observed. However Hubble did not spot the black hole lurking at its centre.

In 2022, Webb usurped Hubble as the most powerful space telescope, unleashing a torrent of discoveries that have scientists rushing to keep up.

Not only has it spotted the black hole at the heart of GN-z11, but it has also discovered galaxies even further back in time and space, which are also bigger than had been thought possible.

- Growing up fast -

The black hole was energetically eating up GN-z11 during the cosmic dawn, a period which came right after the universe's "dark ages," when stars and galaxies were first born.

It normally takes the supermassive black holes squatting at the centre of galaxies hundreds of millions -- if not billions -- of years to form.

So how could this one have grown so quickly?

Study co-author Stephane Charlot, an astrophysicist at France's Institut d'Astrophysique de Paris, suggested that black holes in the early universe could have been formed in a different way than those closer by.

One theory is that they were born huge due to the explosion of especially massive stars that only existed in the early universe, he told AFP.

Or they could have been created by the "direct collapse of a dense gas cloud, without going through the star formation phase," he added.

Once born, the black hole would have been able to gorge itself on the plentiful gas nearby, prompting an almighty growth spurt.

Scholtz emphasised that what has been discovered so far about the black hole of GN-z11 "doesn't rule out any of these scenarios".

And it could be just the beginning.

Scholtz hopes that Webb -- and other telescopes on the way, such as the European Space Agency's Euclid -- will discover more of these black holes in the earliest glimmers of the universe.

X.Vanek--TPP