The Prague Post - Noxious fumes at night aren't a pollinating moth's delight

EUR -
AED 4.343054
AFN 77.464136
ALL 96.578481
AMD 443.001294
ANG 2.116924
AOA 1084.432259
ARS 1696.425045
AUD 1.722632
AWG 2.13043
AZN 2.015092
BAM 1.955364
BBD 2.363473
BDT 143.548016
BGN 1.986001
BHD 0.445401
BIF 3475.425631
BMD 1.182587
BND 1.500966
BOB 8.109193
BRL 6.256361
BSD 1.173439
BTN 107.717999
BWP 16.277373
BYN 3.32206
BYR 23178.695489
BZD 2.360074
CAD 1.622687
CDF 2578.039008
CHF 0.922409
CLF 0.026073
CLP 1029.489324
CNY 8.24689
CNH 8.21806
COP 4228.657801
CRC 580.770597
CUC 1.182587
CUP 31.338542
CVE 110.240437
CZK 24.267271
DJF 208.973438
DKK 7.466899
DOP 73.933527
DZD 153.154875
EGP 55.759418
ERN 17.738798
ETB 182.791072
FJD 2.661179
FKP 0.870315
GBP 0.866681
GEL 3.18162
GGP 0.870315
GHS 12.79115
GIP 0.870315
GMD 86.329235
GNF 10278.709772
GTQ 9.006993
GYD 245.515296
HKD 9.251143
HNL 30.954103
HRK 7.533317
HTG 153.905708
HUF 382.153287
IDR 19840.785951
ILS 3.707232
IMP 0.870315
INR 108.414214
IQD 1537.357457
IRR 49816.456691
ISK 145.777895
JEP 0.870315
JMD 184.718842
JOD 0.838501
JPY 184.134678
KES 151.256298
KGS 103.416722
KHR 4722.947667
KMF 496.686746
KPW 1064.353704
KRW 1710.44627
KWD 0.362349
KYD 0.977982
KZT 590.738376
LAK 25359.349612
LBP 105085.885516
LKR 363.548997
LRD 217.091629
LSL 18.94048
LTL 3.491871
LVL 0.715335
LYD 7.466336
MAD 10.748905
MDL 19.97255
MGA 5308.817127
MKD 61.616271
MMK 2483.187819
MNT 4218.830116
MOP 9.4253
MRU 46.916546
MUR 54.292994
MVR 18.271409
MWK 2034.84661
MXN 20.533372
MYR 4.736855
MZN 75.57955
NAD 18.94048
NGN 1680.526824
NIO 43.180379
NOK 11.555294
NPR 172.348599
NZD 1.987207
OMR 0.454249
PAB 1.173539
PEN 3.936823
PGK 5.018882
PHP 69.733624
PKR 328.342141
PLN 4.208885
PYG 7847.251532
QAR 4.278347
RON 5.101724
RSD 117.373848
RUB 89.207823
RWF 1711.518652
SAR 4.430113
SBD 9.606873
SCR 16.856244
SDG 711.330129
SEK 10.584272
SGD 1.505082
SHP 0.887246
SLE 28.859447
SLL 24798.24684
SOS 669.450838
SRD 45.081425
STD 24477.153012
STN 24.494542
SVC 10.267712
SYP 13078.904017
SZL 18.935781
THB 36.920787
TJS 10.972155
TMT 4.139053
TND 3.416239
TOP 2.847384
TRY 51.246799
TTD 7.971224
TWD 37.116428
TZS 3004.130641
UAH 50.599026
UGX 4148.075755
USD 1.182587
UYU 44.440098
UZS 14242.826515
VES 416.584326
VND 31036.982812
VUV 141.661813
WST 3.258757
XAF 655.810877
XAG 0.011483
XAU 0.000237
XCD 3.196
XCG 2.114929
XDR 0.815618
XOF 655.810877
XPF 119.331742
YER 281.814608
ZAR 19.0597
ZMK 10644.701884
ZMW 23.02187
ZWL 380.792372
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    -0.8100

    83.23

    -0.97%

  • GSK

    0.5000

    49.15

    +1.02%

  • NGG

    1.3200

    81.5

    +1.62%

  • BTI

    0.9400

    59.16

    +1.59%

  • RIO

    3.1300

    90.43

    +3.46%

  • VOD

    0.2300

    14.17

    +1.62%

  • AZN

    1.2600

    92.95

    +1.36%

  • RELX

    0.0600

    39.9

    +0.15%

  • BCE

    0.4900

    25.2

    +1.94%

  • JRI

    0.0100

    13.68

    +0.07%

  • RYCEF

    0.3000

    17.12

    +1.75%

  • CMSC

    0.1000

    23.75

    +0.42%

  • BP

    1.1000

    36.53

    +3.01%

  • CMSD

    0.0900

    24.13

    +0.37%

  • BCC

    -1.1800

    84.33

    -1.4%

Noxious fumes at night aren't a pollinating moth's delight
Noxious fumes at night aren't a pollinating moth's delight / Photo: Ron Wolf - University of Washington/AFP

Noxious fumes at night aren't a pollinating moth's delight

Certain plants have flowers that open only in the evening, and depend on nocturnal pollinators such as moths to thrive.

Text size:

But a new paper published in Science on Thursday finds an atmospheric pollutant that is much more prevalent at night drastically reduces the fluttering creatures' ability to track floral scents.

It adds to a growing understanding of how human activities, including not just air but also light and noise pollution, are negatively impacting the natural world.

"Our impacts on the environment are affecting human health, etc, that we tend to concentrate on, but they're also affecting ecosystem functioning through these plants and pollinators," senior author Jeff Riffell, a biology professor at the University of Washington, told AFP.

Riffell said the role of nitrate radicals (NO3) on flower scents hadn't been well studied, because the chemical is around at night and prior research focused on the impacts of pollution on daytime pollinators like bees.

Nitrate radicals form when nitrogen dioxide reacts in the atmosphere with ozone -- both of which come from burning fossil fuels, and have natural sources too.

Unlike nitrogen dioxide and ozone, however, nitrate radicals rapidly degrade in sunlight, making them virtually absent in daytime.

For their study, Riffell and colleagues chose the pale evening primrose (Oenothera pallida), a wildflower that grows in arid settings across the western United States.

Its white flowers emit a strong, piney scent that attracts the white-lined sphinx moth (Hyles lineata) and the tobacco hawk moth (Manduca sexta), species which use their powerful antennae to sniff out pollen from miles away.

- Pollinator crisis -

First, the team chemically analyzed the wildflower's scent to unravel its chemical recipe, revealing a complex bouquet of chemicals.

Next, they separated out the individual chemicals and exposed them one at a time to the moths, to determine exactly which ones were responsible for attracting the winged insects.

This revealed a subset of the chemicals, known as monoterpene compounds, were largely responsible for the scent, and further tests showed that nitrate radicals decimated the levels of these compounds.

Finally, the team carried out wind tunnel experiments involving the moths and the scent chemicals that they emitted at controlled levels from a fake flower.

"What we found is that the moths really were very sensitive to the flower scent and would kind of navigate upwind and try to feed from this artificial flower," said Rifell.

"But if we added NO3, then all of a sudden, for one species of moth, it totally eliminated their ability to recognize the flower. And for another species, it reduced their attraction to the flower by 50 percent."

The nitrate radicals were comparable to those found at night in a typical urban environment, modeled on Seattle. When the team ran the experiment with the pollutants typically present during the day, they saw far less of an impact.

Overall, the experiment revealed a strong impact on pollination activity, at a time when the world's pollinators are in crisis.

Around three-quarters of the more than 240,000 species of flowering plants depend on pollinators, and over 70 pollinator species are endangered or threatened, said Rifell.

The team also ran computer simulations to determine which parts of the world would be most likely to experience problems as a result of this effect.

Areas identified include much of Europe, the Middle East, Central and South Asia, and southern Africa.

"Outside of human activity, some regions accumulate more NO3 because of natural sources, geography and atmospheric circulation," said co-senior author Joel Thornton, a professor of atmospheric sciences.

"But human activity is producing more NO3 everywhere. We wanted to understand how those two sources — natural and human — combine and where levels could be so high that they could interfere with the ability of pollinators to find flowers."

Z.Pavlik--TPP