The Prague Post - Unfinished deepsea observatory spots highest-energy neutrino ever

EUR -
AED 4.302438
AFN 82.542666
ALL 96.57673
AMD 448.578153
ANG 2.096506
AOA 1074.149961
ARS 1658.65206
AUD 1.778322
AWG 2.108474
AZN 1.994973
BAM 1.949251
BBD 2.359473
BDT 142.570991
BGN 1.954028
BHD 0.441588
BIF 3455.554544
BMD 1.171374
BND 1.500259
BOB 8.094665
BRL 6.36959
BSD 1.171464
BTN 103.204255
BWP 15.625236
BYN 3.963185
BYR 22958.938665
BZD 2.356034
CAD 1.621709
CDF 3367.70151
CHF 0.933573
CLF 0.028881
CLP 1133.000105
CNY 8.341939
CNH 8.342587
COP 4594.774738
CRC 591.512639
CUC 1.171374
CUP 31.041422
CVE 110.548432
CZK 24.32892
DJF 208.176892
DKK 7.466059
DOP 74.645794
DZD 151.569978
EGP 56.194227
ERN 17.570616
ETB 167.096263
FJD 2.676581
FKP 0.864838
GBP 0.865944
GEL 3.144086
GGP 0.864838
GHS 14.165606
GIP 0.864838
GMD 84.922585
GNF 10138.245891
GTQ 8.977836
GYD 244.968591
HKD 9.122957
HNL 30.642834
HRK 7.535573
HTG 153.284342
HUF 393.131974
IDR 19266.590782
ILS 3.917424
IMP 0.864838
INR 103.344333
IQD 1534.500492
IRR 49285.578646
ISK 143.411168
JEP 0.864838
JMD 187.450206
JOD 0.830487
JPY 172.588552
KES 151.699688
KGS 102.436492
KHR 4690.183355
KMF 491.395155
KPW 1054.257708
KRW 1626.769418
KWD 0.357855
KYD 0.976203
KZT 628.598039
LAK 25401.254531
LBP 104896.579339
LKR 353.721568
LRD 234.802145
LSL 20.510876
LTL 3.458765
LVL 0.708553
LYD 6.33697
MAD 10.571674
MDL 19.416433
MGA 5244.824165
MKD 61.333931
MMK 2459.296095
MNT 4213.764356
MOP 9.395812
MRU 46.778802
MUR 53.777393
MVR 18.040107
MWK 2034.677014
MXN 21.835298
MYR 4.926794
MZN 74.90974
NAD 20.510703
NGN 1765.730893
NIO 42.930364
NOK 11.688678
NPR 165.127206
NZD 1.97632
OMR 0.450392
PAB 1.171439
PEN 4.113926
PGK 4.87585
PHP 66.792947
PKR 329.800655
PLN 4.24878
PYG 8390.8086
QAR 4.264916
RON 5.07486
RSD 117.136343
RUB 98.049455
RWF 1693.807414
SAR 4.394885
SBD 9.641105
SCR 16.617138
SDG 703.403207
SEK 10.9883
SGD 1.502762
SHP 0.920516
SLE 27.339605
SLL 24563.133558
SOS 669.439689
SRD 45.951264
STD 24245.085533
STN 24.891706
SVC 10.25056
SYP 15230.37074
SZL 20.510805
THB 37.179796
TJS 11.023229
TMT 4.09981
TND 3.400573
TOP 2.743477
TRY 48.331377
TTD 7.949292
TWD 35.533613
TZS 2912.144636
UAH 48.243219
UGX 4103.214041
USD 1.171374
UYU 46.812719
UZS 14583.611266
VES 179.848952
VND 30909.642552
VUV 140.751578
WST 3.261122
XAF 653.760499
XAG 0.028669
XAU 0.000321
XCD 3.165698
XCG 2.111306
XDR 0.812394
XOF 657.140872
XPF 119.331742
YER 280.720121
ZAR 20.533989
ZMK 10543.778182
ZMW 28.085041
ZWL 377.182086
  • CMSC

    -0.0300

    24.14

    -0.12%

  • SCS

    -0.3400

    16.88

    -2.01%

  • GSK

    0.7300

    40.78

    +1.79%

  • JRI

    0.0500

    13.78

    +0.36%

  • NGG

    -0.0600

    70.36

    -0.09%

  • RIO

    -1.8500

    61.87

    -2.99%

  • BCC

    -3.7300

    85.29

    -4.37%

  • RBGPF

    1.8400

    77.27

    +2.38%

  • BCE

    -0.1900

    24.2

    -0.79%

  • CMSD

    -0.0200

    24.37

    -0.08%

  • AZN

    -0.3400

    81.22

    -0.42%

  • BTI

    0.0700

    56.26

    +0.12%

  • RYCEF

    -0.1300

    14.65

    -0.89%

  • RELX

    -0.1200

    47.19

    -0.25%

  • VOD

    0.0600

    11.86

    +0.51%

  • BP

    0.1800

    34.09

    +0.53%

Unfinished deepsea observatory spots highest-energy neutrino ever
Unfinished deepsea observatory spots highest-energy neutrino ever / Photo: ANNE-CHRISTINE POUJOULAT - AFP/File

Unfinished deepsea observatory spots highest-energy neutrino ever

A neutrino with 30 times more energy than any previously seen on Earth was detected by an unfinished observatory at the bottom of the Mediterranean Sea after travelling from beyond this galaxy, scientists said Wednesday.

Text size:

Neutrinos are the second most abundant particle in the universe. Known as ghost particles, they have no electric charge, almost no mass and effortlessly pass through most matter -- such as our world or bodies -- without anyone noticing.

The most violently explosive events in the universe -- such as a star going supernova, two neutron stars smashing into each other or the almighty suck of supermassive black holes -- create what is called ultra-high-energy neutrinos.

Because these particles interact so little with matter, they glide easily away from the violence that created them, travelling in a straight line across the universe.

When they finally arrive at Earth, neutrinos serve as "special cosmic messengers" offering a glimpse into the far reaches of the cosmos that is otherwise hidden from our view, Italian researcher Rosa Coniglione said in a statement.

However, these ghost particles are extremely difficult to detect. One way is by using water.

When light passes through water, it slows down. This sometimes allows quick-moving particles to overtake light -- while still not going faster than the speed of light.

When this happens, it creates a bluish glow called "Cherenkov light" that can be detected by extraordinarily sensitive sensors.

But to observe this light requires a huge amount of water -- at least one cubic kilometre, the equivalent of 400,000 Olympic swimming pools.

That is why the Cubic Kilometre Neutrino Telescope, or KM3NeT, lies at the bottom of the Mediterranean.

- Think of a ping pong ball -

The European-led facility is still under construction, and spread over two sites. Its ARCA detector, which is interested in astronomy, is nearly 3,500 metres (2.2 miles) underwater off the coast of Sicily.

The neutrino-hunting ORCA detector is in the depths near the French city of Toulon.

Cables hundreds of metres long equipped with photomultipliers -- which amplify miniscule amounts of light -- have been anchored to the seabed nearby. Eventually 200,000 photomultipliers will be arrayed in the abyss.

But the ARCA detector was operating at just a tenth of what will be its eventual power when it spotted something strange on February 13, 2023, according to new research published in the journal Nature.

A muon, which is a heavy electron produced by a neutrino, "crossed the entire detector, inducing signals in more than one-third of the active sensors," according to a statement from KM3NeT, which brings together 350 scientists from institutions in 21 countries.

The neutrino had an estimated energy of 220 petaelectronvolts -- or 220 million billion electron volts.

A neutrino with such a massive amount of energy had never before been observed on Earth.

"It is roughly the energy of a ping pong ball falling from one metre height," Dutch physicist and KM3NeT researcher Aart Heijboer told a press conference.

"But the amazing thing is that all this energy is contained in one single elementary" particle, he added.

For humans to create such a particle would require building the equivalent of a Large Hadron Collider "all around the Earth at the distance of the geostationary satellites", said French physicist Paschal Coyle.

- Blazars as source? -

With this kind of energy, the event that created this neutrino must have been beyond Milky Way.

The exact distance remains unknown, "but what we are quite sure is that it's not coming from our galaxy", said French physicist Damien Dornic.

The astrophysicists have some theories about what could have caused such a neutrino. Among the suspects are 12 blazars -- the incredibly bright cores of galaxies with supermassive black holes.

But more research is needed.

"At the time this event happened, our neutrino alert system was still in development," Heijboer emphasised.

If another neutrino is detected near the end of this year, an alert will be sent in seconds to "all the telescopes around the world so that they can point in that direction" to try to spot the source, he said.

T.Musil--TPP