The Prague Post - Less mapped than the Moon: quest to reveal the seabed

EUR -
AED 4.232438
AFN 81.7399
ALL 97.895927
AMD 444.690649
ANG 2.06248
AOA 1056.812299
ARS 1342.051944
AUD 1.776305
AWG 2.07444
AZN 1.963769
BAM 1.955319
BBD 2.326228
BDT 140.905351
BGN 1.956255
BHD 0.434593
BIF 3431.056288
BMD 1.152467
BND 1.480136
BOB 7.961042
BRL 6.353668
BSD 1.152117
BTN 99.741473
BWP 15.528182
BYN 3.770473
BYR 22588.345428
BZD 2.314331
CAD 1.581934
CDF 3315.646835
CHF 0.942631
CLF 0.028263
CLP 1084.563727
CNY 8.284511
CNH 8.272986
COP 4705.142985
CRC 581.656968
CUC 1.152467
CUP 30.540365
CVE 110.237892
CZK 24.820447
DJF 205.169548
DKK 7.460613
DOP 68.323199
DZD 150.345929
EGP 58.324658
ERN 17.286999
ETB 158.433541
FJD 2.603941
FKP 0.85594
GBP 0.85647
GEL 3.135159
GGP 0.85594
GHS 11.867082
GIP 0.85594
GMD 82.4058
GNF 9982.545249
GTQ 8.854823
GYD 241.040727
HKD 9.046696
HNL 30.090601
HRK 7.536214
HTG 151.212816
HUF 402.706852
IDR 18944.591768
ILS 4.02004
IMP 0.85594
INR 99.807354
IQD 1509.328849
IRR 48547.656077
ISK 143.033075
JEP 0.85594
JMD 183.664836
JOD 0.817144
JPY 168.352902
KES 148.913382
KGS 100.783647
KHR 4617.864447
KMF 492.683845
KPW 1037.226262
KRW 1582.533008
KWD 0.35307
KYD 0.960164
KZT 602.06195
LAK 24856.887583
LBP 103230.815094
LKR 346.214864
LRD 230.423338
LSL 20.801885
LTL 3.402935
LVL 0.697116
LYD 6.280456
MAD 10.515714
MDL 19.811128
MGA 5148.733904
MKD 61.519872
MMK 2419.50369
MNT 4130.366588
MOP 9.315509
MRU 45.542801
MUR 52.575963
MVR 17.753793
MWK 1997.80873
MXN 22.112036
MYR 4.900869
MZN 73.712199
NAD 20.801885
NGN 1786.450441
NIO 42.399574
NOK 11.650198
NPR 159.586757
NZD 1.931967
OMR 0.443128
PAB 1.152117
PEN 4.137283
PGK 4.816816
PHP 65.888865
PKR 326.91661
PLN 4.268679
PYG 9195.738728
QAR 4.202067
RON 5.030175
RSD 117.20118
RUB 90.368278
RWF 1663.690891
SAR 4.323762
SBD 9.612065
SCR 16.999311
SDG 692.060432
SEK 11.146611
SGD 1.482116
SHP 0.905658
SLE 25.873303
SLL 24166.652664
SOS 658.438087
SRD 44.773754
STD 23853.731871
SVC 10.081521
SYP 14984.415101
SZL 20.797886
THB 37.818235
TJS 11.377302
TMT 4.033633
TND 3.410561
TOP 2.699196
TRY 45.723145
TTD 7.830075
TWD 34.101261
TZS 3058.947791
UAH 48.287326
UGX 4152.978764
USD 1.152467
UYU 47.108416
UZS 14469.441901
VES 118.193176
VND 30112.223648
VUV 138.533142
WST 3.179258
XAF 655.795737
XAG 0.03201
XAU 0.000342
XCD 3.114599
XDR 0.815599
XOF 655.795737
XPF 119.331742
YER 279.707783
ZAR 20.740485
ZMK 10373.586524
ZMW 26.643448
ZWL 371.093776
  • CMSC

    0.0900

    22.314

    +0.4%

  • CMSD

    0.0250

    22.285

    +0.11%

  • RBGPF

    0.0000

    69.04

    0%

  • SCS

    0.0400

    10.74

    +0.37%

  • RELX

    0.0300

    53

    +0.06%

  • RIO

    -0.1400

    59.33

    -0.24%

  • GSK

    0.1300

    41.45

    +0.31%

  • NGG

    0.2700

    71.48

    +0.38%

  • BP

    0.1750

    30.4

    +0.58%

  • BTI

    0.7150

    48.215

    +1.48%

  • BCC

    0.7900

    91.02

    +0.87%

  • JRI

    0.0200

    13.13

    +0.15%

  • VOD

    0.0100

    9.85

    +0.1%

  • BCE

    -0.0600

    22.445

    -0.27%

  • RYCEF

    0.1000

    12

    +0.83%

  • AZN

    -0.1200

    73.71

    -0.16%

Less mapped than the Moon: quest to reveal the seabed
Less mapped than the Moon: quest to reveal the seabed / Photo: Boris HORVAT - AFP/File

Less mapped than the Moon: quest to reveal the seabed

It covers nearly three-quarters of our planet but the ocean floor is less mapped than the Moon, an astonishing fact driving a global push to build the clearest-ever picture of the seabed.

Text size:

Understanding the ocean depths is crucial for everything from laying undersea cables and calculating tsunami paths, to projecting how seas will rise as the climate warms.

When Seabed 2030 launched in 2017, just six percent of the ocean floor was properly mapped.

The project has since boosted that figure to over 25 percent, harnessing historic data, sonar from research and industry vessels, and growing computing power.

"As we put more data together, we get this beautiful picture of the seafloor, it's really like bringing it into focus," said Vicki Ferrini, head of the project's Atlantic and Indian Ocean Centre.

"You start to see the details and the patterns, you start to understand the (ocean) processes in a different way," added Ferrini, a senior research scientist at Columbia University's Lamont-Doherty Earth Observatory.

Satellite technology means we can now zoom in on the surface of the Moon, or a neighbourhood half-way around the world, but when it comes to the ocean floor, there's a basic problem.

"It's physics," said Ferrini. "The water is in the way."

While instruments can peer through relatively shallow depths to the sea floor, for most of the ocean only acoustic methods are viable -- sonar that pings the seabed and returns data on depths.

In the past, most ships used single beam sonar, sending down a single echo and offering one data point at a time.

Nowadays, multibeam sonar is common, explained Martin Jakobsson, dean of earth and environmental science at Stockholm University and co-head of Seabed 2030's Arctic and North Pacific centre.

"You get a swathe, almost like a 3D view directly, and that's really what we want to map the ocean with."

- 'More geopolitical than ever' -

But the availability of multibeam sonar did not translate into a central clearing house for data, and not all data collection is equal.

Different vessels collect at different resolutions, and data capture can be affected by the turbidity of the ocean and even the tides.

Collating, correcting and integrating that data is where Seabed 2030 has come in.

"We have this real patchwork," said Ferrini. "We do our best to weave it all together... making sure that we are normalising and justifying all of these measurements."

The project has set relatively coarse resolution targets for mapping -- grid cell sizes of 400 metres squared (4,300 square feet) for most of the ocean floor -- but even achieving that is a complicated process.

"It's a cost issue, it's also a 'people don't know why it's needed' issue," Jakobsson said.

"And right now it's more geopolitical than ever before," he added, particularly in the heavily contested Arctic.

- 'Just beautiful' -

The project has benefitted from some technological advances, including the spread of multibeam sonar and growing computing power.

Machine learning helps with data processing and pattern recognition, and can even enhance imagery and try to fill in some gaps.

"As we start to bring together each trackline and paint the picture more completely... we start to see these incredible meandering channels on the seafloor that look just like what we see on land," said Ferrini.

It is "just beautiful," she added.

Part of the project, which is funded by the Japanese non-profit Nippon Foundation, has been finding the biggest gaps in seafloor knowledge, most often in the open sea and areas outside common shipping routes.

Autonomous platforms equipped with sonar that can float at sea could speed up data collection, although for now uncovering "hidden" data that is sitting unshared is helping fill many gaps.

The work comes as countries debate whether to open stretches of the seabed to the mining of minerals used in the energy transition.

It is a divisive question, and like many scientists Ferrini warns against proceeding without more research.

"We need to have the data so we can make data-informed decisions, and we don't yet."

P.Benes--TPP