The Prague Post - What happens to the human body in deep space?

EUR -
AED 4.311507
AFN 77.883461
ALL 96.392812
AMD 447.932342
ANG 2.10193
AOA 1076.55641
ARS 1702.569707
AUD 1.77198
AWG 2.113197
AZN 1.997675
BAM 1.954632
BBD 2.367795
BDT 143.664155
BGN 1.953892
BHD 0.442641
BIF 3485.717141
BMD 1.173998
BND 1.515694
BOB 8.123146
BRL 6.467912
BSD 1.175603
BTN 106.834162
BWP 15.526722
BYN 3.445156
BYR 23010.37036
BZD 2.364397
CAD 1.616426
CDF 2641.496061
CHF 0.934057
CLF 0.027358
CLP 1073.246118
CNY 8.267239
CNH 8.264204
COP 4509.304712
CRC 586.649453
CUC 1.173998
CUP 31.11096
CVE 110.199151
CZK 24.302356
DJF 209.345799
DKK 7.471203
DOP 75.534865
DZD 151.988189
EGP 55.62346
ERN 17.609977
ETB 182.498849
FJD 2.676126
FKP 0.87744
GBP 0.875627
GEL 3.163966
GGP 0.87744
GHS 13.519921
GIP 0.87744
GMD 86.286867
GNF 10222.891403
GTQ 9.002621
GYD 245.953033
HKD 9.131894
HNL 30.973492
HRK 7.535073
HTG 153.958004
HUF 385.77819
IDR 19599.317754
ILS 3.789317
IMP 0.87744
INR 106.871254
IQD 1540.086294
IRR 49451.753977
ISK 148.006311
JEP 0.87744
JMD 188.687252
JOD 0.832336
JPY 181.933378
KES 151.598805
KGS 102.665951
KHR 4707.187263
KMF 493.079304
KPW 1056.598933
KRW 1738.021517
KWD 0.359936
KYD 0.979719
KZT 605.980483
LAK 25469.889172
LBP 105276.341436
LKR 363.92409
LRD 208.08566
LSL 19.742187
LTL 3.466512
LVL 0.71014
LYD 6.369221
MAD 10.758172
MDL 19.797255
MGA 5310.826563
MKD 61.555445
MMK 2465.122153
MNT 4163.987126
MOP 9.420111
MRU 46.62514
MUR 53.909791
MVR 18.091313
MWK 2038.481923
MXN 21.095192
MYR 4.796376
MZN 75.030528
NAD 19.742187
NGN 1706.6061
NIO 43.264148
NOK 11.960286
NPR 170.934859
NZD 2.029931
OMR 0.451391
PAB 1.175598
PEN 3.960134
PGK 4.998013
PHP 68.876725
PKR 329.466134
PLN 4.215911
PYG 7896.315258
QAR 4.286339
RON 5.092338
RSD 117.391349
RUB 92.80258
RWF 1711.677203
SAR 4.403481
SBD 9.583821
SCR 16.285744
SDG 706.16017
SEK 10.923152
SGD 1.516066
SHP 0.880803
SLE 27.941088
SLL 24618.165591
SOS 671.898513
SRD 45.407931
STD 24299.398403
STN 24.485369
SVC 10.286897
SYP 12982.628222
SZL 19.725297
THB 36.946893
TJS 10.803844
TMT 4.120735
TND 3.433049
TOP 2.826707
TRY 50.141575
TTD 7.975268
TWD 37.065495
TZS 2901.479745
UAH 49.578375
UGX 4185.498993
USD 1.173998
UYU 45.992518
UZS 14254.482362
VES 320.788162
VND 30939.556147
VUV 142.59599
WST 3.262909
XAF 655.565273
XAG 0.017837
XAU 0.000272
XCD 3.172789
XCG 2.118743
XDR 0.815313
XOF 655.568063
XPF 119.331742
YER 279.823127
ZAR 19.674806
ZMK 10567.396181
ZMW 27.009975
ZWL 378.027034
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.4100

    82.01

    +0.5%

  • VOD

    0.0000

    12.7

    0%

  • RYCEF

    -0.3100

    14.64

    -2.12%

  • CMSC

    0.0400

    23.34

    +0.17%

  • GSK

    -0.4600

    48.78

    -0.94%

  • RIO

    0.1700

    75.99

    +0.22%

  • NGG

    -0.2600

    75.77

    -0.34%

  • BCC

    0.5100

    75.84

    +0.67%

  • BCE

    -0.2800

    23.33

    -1.2%

  • AZN

    -0.2100

    91.35

    -0.23%

  • JRI

    -0.0500

    13.51

    -0.37%

  • CMSD

    0.0150

    23.38

    +0.06%

  • RELX

    -0.2600

    40.82

    -0.64%

  • BTI

    -0.4500

    57.29

    -0.79%

  • BP

    -1.4900

    33.76

    -4.41%

What happens to the human body in deep space?
What happens to the human body in deep space? / Photo: - - NASA/AFP/File

What happens to the human body in deep space?

Bone and muscle deterioration, radiation exposure, vision impairment -- these are just a few of the challenges space travelers face on long-duration missions, even before considering the psychological toll of isolation.

Text size:

As US astronauts Butch Wilmore and Suni Williams prepare to return home after nine months aboard the International Space Station (ISS), some of the health risks they've faced are well-documented and managed, while others remain a mystery.

These dangers will only grow as humanity pushes deeper into the solar system, including to Mars, demanding innovative solutions to safeguard the future of space exploration.

- Exercise key -

Despite the attention their mission has received, Wilmore and Williams' nine-month stay is "par for the course," said Rihana Bokhari, an assistant professor at the Center for Space Medicine at Baylor College.

ISS missions typically last six months, but some astronauts stay up to a year, and researchers are confident in their ability to maintain astronaut health for that duration.

Most people know that lifting weights builds muscle and strengthens bones, but even basic movement on Earth resists gravity, an element missing in orbit.

To counteract this, astronauts use three exercise machines on the ISS, including a 2009-installed resistance device that simulates free weights using vacuum tubes and flywheel cables.

A two-hour daily workout keeps them in shape. "The best results that we have to show that we're being very effective is that we don't really have a fracture problem in astronauts when they return to the ground," though bone loss is still detectable on scans, Bokhari told AFP.

Balance disruption is another issue, added Emmanuel Urquieta, vice chair of Aerospace Medicine at the University of Central Florida.

"This happens to every single astronaut, even those who go into space just for a few days," he told AFP, as they work to rebuild trust in their inner ear.

Astronauts must retrain their bodies during NASA's 45-day post-mission rehabilitation program.

Another challenge is "fluid shift" -- the redistribution of bodily fluids toward the head in microgravity. This can increase calcium levels in urine, raising the risk of kidney stones.

Fluid shifts might also contribute to increased intracranial pressure, altering the shape of the eyeball and causing spaceflight-associated neuro-ocular syndrome (SANS), causing mild-to-moderate vision impairment. Another theory suggests raised carbon dioxide levels are the cause.

But in at least one case, the effects have been beneficial. "I had a pretty severe case of SANS," NASA astronaut Jessica Meir said before the latest launch.

"When I launched, I wore glasses and contacts, but due to globe flattening, I now have 20/15 vision -- most expensive corrective surgery possible. Thank you, taxpayers."

- Managing radiation -

Radiation levels aboard the ISS are higher than on the ground, as it passes through through the Van Allen radiation belt, but Earth's magnetic field still provides significant protection.

The shielding is crucial, as NASA aims to limit astronauts' increased lifetime cancer risk to within three percent.

However, missions to the Moon and Mars will give astronauts far greater exposure, explained astrophysicist Siegfried Eggl.

Future space probes could provide some warning time for high-radiation events, such coronal mass ejections -- plasma clouds from the Sun -- but cosmic radiation remains unpredictable.

"Shielding is best done with heavy materials like lead or water, but you need vast quantities of it," said Eggl, of University of Illinois Urbana-Champaign.

Artificial gravity, created by rotating spacecraft frames, could help astronauts stay functional upon arrival after a nine-month journey to Mars.

Alternatively, a spacecraft could use powerful acceleration and deceleration that matches the force of Earth's gravity.

That approach would be speedier -- reducing radiation exposure risks -- but requires nuclear propulsion technologies that don't yet exist.

Preventing infighting among teams will be critical, said Joseph Keebler, a psychologist at Embry-Riddle Aeronautical University.

"Imagine being stuck in a van with anybody for three years: these vessels aren't that big, there's no privacy, there's no backyard to go to," he said.

"I really commend astronauts that commit to this. It's an unfathomable job."

I.Horak--TPP