The Prague Post - Physicists still divided about quantum world, 100 years on

EUR -
AED 4.202051
AFN 79.52066
ALL 96.497993
AMD 439.120495
ANG 2.047453
AOA 1049.067364
ARS 1510.133882
AUD 1.768553
AWG 2.062097
AZN 1.925484
BAM 1.939719
BBD 2.310842
BDT 140.316725
BGN 1.95782
BHD 0.431315
BIF 3366.280815
BMD 1.144021
BND 1.475468
BOB 7.908505
BRL 6.380544
BSD 1.144512
BTN 100.03852
BWP 15.470876
BYN 3.745449
BYR 22422.80509
BZD 2.298961
CAD 1.580848
CDF 3306.21998
CHF 0.929398
CLF 0.028635
CLP 1123.347928
CNY 8.210518
CNH 8.236623
COP 4791.730567
CRC 578.608193
CUC 1.144021
CUP 30.316548
CVE 109.769028
CZK 24.585405
DJF 203.315207
DKK 7.463351
DOP 69.785187
DZD 149.495011
EGP 55.702939
ERN 17.16031
ETB 158.103975
FJD 2.59012
FKP 0.857694
GBP 0.862328
GEL 3.088624
GGP 0.857694
GHS 12.011765
GIP 0.857694
GMD 82.369785
GNF 9924.379736
GTQ 8.781201
GYD 239.446994
HKD 8.980391
HNL 30.145035
HRK 7.537494
HTG 150.184914
HUF 399.931351
IDR 18839.617956
ILS 3.864977
IMP 0.857694
INR 100.209747
IQD 1498.667075
IRR 48177.583223
ISK 142.204246
JEP 0.857694
JMD 183.133361
JOD 0.8111
JPY 170.201681
KES 148.153214
KGS 100.045028
KHR 4593.242787
KMF 493.65769
KPW 1029.523141
KRW 1590.280169
KWD 0.34999
KYD 0.953801
KZT 622.157534
LAK 24687.966475
LBP 103545.957808
LKR 345.773417
LRD 229.948176
LSL 20.603536
LTL 3.377996
LVL 0.692007
LYD 6.194852
MAD 10.415162
MDL 19.525299
MGA 5068.011195
MKD 61.7411
MMK 2401.188158
MNT 4107.588313
MOP 9.254182
MRU 45.554946
MUR 53.482723
MVR 17.617338
MWK 1986.558606
MXN 21.527357
MYR 4.864949
MZN 73.171391
NAD 20.60407
NGN 1750.935339
NIO 42.042622
NOK 11.76512
NPR 160.060046
NZD 1.929814
OMR 0.439916
PAB 1.144522
PEN 4.083033
PGK 4.725092
PHP 66.778731
PKR 324.043723
PLN 4.26996
PYG 8571.93565
QAR 4.165094
RON 5.076131
RSD 117.164909
RUB 92.780173
RWF 1647.389762
SAR 4.29141
SBD 9.431493
SCR 16.800223
SDG 686.981278
SEK 11.163068
SGD 1.480609
SHP 0.899021
SLE 26.312223
SLL 23989.545909
SOS 653.801465
SRD 41.951121
STD 23678.918056
STN 24.682246
SVC 10.013981
SYP 14874.498779
SZL 20.603621
THB 37.412336
TJS 10.941289
TMT 4.015513
TND 3.294449
TOP 2.679412
TRY 46.438762
TTD 7.766679
TWD 34.163888
TZS 2934.412962
UAH 47.781096
UGX 4103.073745
USD 1.144021
UYU 45.800299
UZS 14420.380841
VES 141.540039
VND 29984.781704
VUV 136.682886
WST 3.154196
XAF 650.56924
XAG 0.030743
XAU 0.000346
XCD 3.091773
XCG 2.0626
XDR 0.793275
XOF 648.087437
XPF 119.331742
YER 275.308986
ZAR 20.559293
ZMK 10297.559455
ZMW 26.294241
ZWL 368.374188
  • RBGPF

    0.3900

    74.42

    +0.52%

  • VOD

    -0.0500

    11.06

    -0.45%

  • RELX

    -0.1400

    51.78

    -0.27%

  • BTI

    0.3900

    53.16

    +0.73%

  • GSK

    1.3000

    38.97

    +3.34%

  • RYCEF

    -0.4000

    13.1

    -3.05%

  • CMSC

    -0.0100

    22.6

    -0.04%

  • RIO

    -2.7800

    59.49

    -4.67%

  • SCU

    0.0000

    12.72

    0%

  • NGG

    -0.3300

    70.19

    -0.47%

  • BP

    -0.7100

    32.25

    -2.2%

  • AZN

    2.6100

    76.59

    +3.41%

  • BCC

    -1.2500

    84.89

    -1.47%

  • SCS

    -0.1800

    10.33

    -1.74%

  • JRI

    0.0500

    13.11

    +0.38%

  • CMSD

    -0.0600

    23.06

    -0.26%

  • BCE

    -0.1300

    23.53

    -0.55%

Physicists still divided about quantum world, 100 years on
Physicists still divided about quantum world, 100 years on / Photo: Ludovic MARIN - AFP/File

Physicists still divided about quantum world, 100 years on

The theory of quantum mechanics has transformed daily life since being proposed a century ago, yet how it works remains a mystery -- and physicists are deeply divided about what is actually going on, a survey in the journal Nature said Wednesday.

Text size:

"Shut up and calculate!" is a famous quote in quantum physics that illustrates the frustration of scientists struggling to unravel one of the world's great paradoxes.

For the last century, equations based on quantum mechanics have consistently and accurately described the behaviour of extremely small objects.

However, no one knows what is happening in the physical reality behind the mathematics.

The problem started at the turn of the 20th century, when scientists realised that the classical principles of physics did not apply to things on the level on atoms.

Bafflingly, photons and electrons appear to behave like both particles and waves. They can also be in different positions simultaneously -- and have different speeds or levels of energy.

In 1925, Austrian physicist Erwin Schroedinger and Germany's Werner Heisenberg developed a set of complex mathematical tools that describe quantum mechanics using probabilities.

This "wave function" made it possible to predict the results of measurements of a particle.

These equations led to the development of a huge amount of modern technology, including lasers, LED lights, MRI scanners and the transistors used in computers and phones.

But the question remained: what exactly is happening in the world beyond the maths?

- A confusing cat -

To mark the 100th year of quantum mechanics, many of the world's leading physicists gathered last month on the German island of Heligoland, where Heisenberg wrote his famous equation.

More than 1,100 of them responded to a survey conducted by the leading scientific journal Nature.

The results showed there is a "striking lack of consensus among physicists about what quantum theory says about reality", Nature said in a statement.

More than a third -- 36 percent -- of the respondents favoured the mostly widely accepted theory, known as the Copenhagen interpretation.

In the classical world, everything has defined properties -- such as position or speed -- whether we observe them or not.

But this is not the case in the quantum realm, according to the Copenhagen interpretation developed by Heisenberg and Danish physicist Niels Bohr in the 1920s.

It is only when an observer measures a quantum object that it settles on a specific state from the possible options, goes the theory. This is described as its wave function "collapsing" into a single possibility.

The most famous depiction of this idea is Schroedinger's cat, which remains simultaneously alive and dead in a box -- until someone peeks inside.

The Copenhagen interpretation "is the simplest we have", Brazilian physics philosopher Decio Krause told Nature after responding to the survey.

Despite the theory's problems -- such as not explaining why measurement has this effect -- the alternatives "present other problems which, to me, are worse," he said.

- Enter the multiverse -

But the majority of the physicists supported other ideas.

Fifteen percent of the respondents opted for the "many worlds" interpretation, one of several theories in physics that propose we live in a multiverse.

It asserts that the wave function does not collapse, but instead branches off into as many universes as there are possible outcomes.

So when an observer measures a particle, they get the position for their world -- but it is in all other possible positions across many parallel universes.

"It requires a dramatic readjustment of our intuitions about the world, but to me that's just what we should expect from a fundamental theory of reality," US theoretical physicist Sean Carroll said in the survey.

The quantum experts were split on other big questions facing the field.

Is there some kind of boundary between the quantum and classical worlds, where the laws of physics suddenly change?

Forty-five percent of the physicists responded yes to this question -- and the exact same percentage responded no.

Just 24 percent said they were confident the quantum interpretation they chose was correct.

And three quarters believed that it will be replaced by a more comprehensive theory one day.

I.Mala--TPP