The Prague Post - Scientists find oldest Martian meteorite's original home

EUR -
AED 4.324654
AFN 80.298122
ALL 97.030523
AMD 450.422441
ANG 2.107608
AOA 1079.838334
ARS 1675.672611
AUD 1.781671
AWG 2.119639
AZN 2.004139
BAM 1.963373
BBD 2.364295
BDT 143.262001
BGN 1.956463
BHD 0.443952
BIF 3502.443693
BMD 1.177577
BND 1.507454
BOB 8.163211
BRL 6.385312
BSD 1.173888
BTN 103.27734
BWP 15.71825
BYN 3.969056
BYR 23080.515289
BZD 2.360891
CAD 1.624592
CDF 3385.534829
CHF 0.932688
CLF 0.029133
CLP 1142.885981
CNY 8.395949
CNH 8.384942
COP 4639.654604
CRC 593.651492
CUC 1.177577
CUP 31.205799
CVE 111.058288
CZK 24.342402
DJF 209.039406
DKK 7.467871
DOP 74.952893
DZD 152.443248
EGP 56.8154
ERN 17.66366
ETB 167.451166
FJD 2.639246
FKP 0.872758
GBP 0.867445
GEL 3.18477
GGP 0.872758
GHS 14.260841
GIP 0.872758
GMD 85.375531
GNF 10179.170945
GTQ 9.025816
GYD 246.271587
HKD 9.172415
HNL 30.805455
HRK 7.534608
HTG 153.598564
HUF 393.220117
IDR 19397.053461
ILS 3.914002
IMP 0.872758
INR 103.778118
IQD 1542.626277
IRR 49517.126111
ISK 143.416817
JEP 0.872758
JMD 188.416775
JOD 0.834887
JPY 173.068727
KES 152.138686
KGS 102.978517
KHR 4716.197477
KMF 493.993732
KPW 1059.806487
KRW 1633.900396
KWD 0.359408
KYD 0.978274
KZT 627.688846
LAK 25472.954828
LBP 105121.663847
LKR 354.458995
LRD 235.368301
LSL 20.619427
LTL 3.47708
LVL 0.712305
LYD 6.35097
MAD 10.627581
MDL 19.603514
MGA 5272.602315
MKD 61.602081
MMK 2472.679273
MNT 4233.329926
MOP 9.423942
MRU 47.026549
MUR 53.956648
MVR 18.136836
MWK 2045.451821
MXN 21.938859
MYR 4.957013
MZN 75.306106
NAD 20.61953
NGN 1774.126481
NIO 43.197406
NOK 11.745757
NPR 165.243343
NZD 1.978507
OMR 0.452761
PAB 1.1771
PEN 4.135711
PGK 4.901669
PHP 66.845206
PKR 333.090844
PLN 4.248895
PYG 8461.285683
QAR 4.2875
RON 5.073706
RSD 117.163064
RUB 97.11657
RWF 1700.966695
SAR 4.417821
SBD 9.692158
SCR 17.451443
SDG 707.134003
SEK 11.002941
SGD 1.509182
SHP 0.925391
SLE 27.484499
SLL 24693.205026
SOS 672.986685
SRD 46.061526
STD 24373.472812
STN 24.526917
SVC 10.271272
SYP 15310.807647
SZL 20.618996
THB 37.258367
TJS 11.087368
TMT 4.121521
TND 3.415429
TOP 2.758008
TRY 48.602336
TTD 7.965742
TWD 35.746301
TZS 2943.757201
UAH 48.429548
UGX 4130.916792
USD 1.177577
UYU 47.272345
UZS 14660.837842
VES 180.801323
VND 31072.143708
VUV 141.866555
WST 3.268328
XAF 656.677659
XAG 0.028479
XAU 0.000323
XCD 3.182461
XCG 2.115622
XDR 0.816696
XOF 656.677659
XPF 119.331742
YER 282.206373
ZAR 20.576396
ZMK 10599.611279
ZMW 28.143886
ZWL 379.179414
  • RBGPF

    1.8400

    77.27

    +2.38%

  • CMSC

    -0.0600

    24.17

    -0.25%

  • BCC

    -1.0000

    89.02

    -1.12%

  • SCS

    0.0800

    17.22

    +0.46%

  • CMSD

    -0.0700

    24.39

    -0.29%

  • JRI

    0.1100

    13.73

    +0.8%

  • RIO

    -0.2500

    63.72

    -0.39%

  • NGG

    0.3200

    70.42

    +0.45%

  • GSK

    -0.4500

    40.05

    -1.12%

  • AZN

    -0.1400

    81.56

    -0.17%

  • RELX

    0.2600

    47.31

    +0.55%

  • RYCEF

    0.0800

    14.69

    +0.54%

  • BCE

    -0.3300

    24.39

    -1.35%

  • BTI

    0.1700

    56.19

    +0.3%

  • BP

    -0.0200

    33.91

    -0.06%

  • VOD

    -0.0100

    11.8

    -0.08%

Scientists find oldest Martian meteorite's original home
Scientists find oldest Martian meteorite's original home / Photo: - - NASA/AFP/File

Scientists find oldest Martian meteorite's original home

Scientists announced Tuesday they had found the crater from which the oldest known Martian meteorite was originally blasted towards Earth, a discovery that could provide clues into how our own planet was formed.

Text size:

The meteorite NWA 7034, nicknamed Black Beauty, has fascinated geologists since it was discovered in the Sahara Desert in 2011.

It fits easily in the hand, weighing just over 300 grams (10.6 ounces), and contains a mix of materials including zircons, which date back nearly 4.5 billion years.

"That makes it one of the oldest rocks studied in the history of geology," Sylvain Bouley, a planetary scientist at France's Paris-Saclay University, told AFP.

Its journey dates back to the solar system's infancy, "about 80 million years after the planets began forming", said Bouley, who co-authored a new study on the meteorite.

Tectonic plates long ago covered up Earth's ancient crust, meaning that "we have lost this primitive history of our planet", Bouley said.

But Black Beauty could offer "an open book on a planet's first moments", he added.

To open that book, a team of researchers at Australia's Curtin University set out to find the meteorite's original home on Mars.

They knew that it was likely an asteroid hitting the red planet that sent Black Beauty shooting up into space.

The impact "had enough force to eject the rocks at very high speed -- more than five kilometres (three miles) a second -- to escape the Martian gravity", Curtin's Anthony Lagain, the lead author of the study in Nature Communications, told AFP.

Such a crater would have to be massive -- at least three kilometres in diameter.

The problem? The pockmarked surface of Mars has around 80,000 craters at least that big.

- Following the clues -

But the researchers had a clue: by measuring Black Beauty's exposure to cosmic rays, they knew it was dislodged from its first home around five million years ago.

"So, we were looking for a crater that was very young and large," Lagain said.

Another clue was that its composition showed it had suddenly heated up around 1.5 million years ago -- likely by the impact of a second asteroid.

The team then created an algorithm and used a supercomputer to trawl through images of 90 million craters taken by a NASA satellite.

That narrowed it down to 19 craters, allowing the researchers to rule out the remaining suspects.

They found that Black Beauty was dug up from its first home by an asteroid that struck around 1.5 billion years ago, forming the 40-kilometre Khujirt crater.

Then a few million years ago, another asteroid hit not far away, creating the 10-kilometre Karratha crater and shooting the Black Beauty towards Earth.

The region in Mars' southern hemisphere is rich in the elements potassium and thorium, just like Black Beauty.

Another factor was that Black Beauty is the only Martian meteorite that is highly magnetised.

"The region where Karratha was found is the most magnetised on Mars," Lagain said.

Known as the Terra Cimmeria—Sirenum province, it is "a relic of the early crustal processes on Mars, and thus, a region of high interest for future missions," the study said.

Bouley pointed to a "bias" in the currently planned missions to Mars in favour of searching for signs of water and life.

But to understand how planets first form would answer some fundamental questions, Lagain said, including "how Earth became such an exceptional planet in the Universe".

X.Vanek--TPP