The Prague Post - Scientists observe 'negative time' in quantum experiments

EUR -
AED 4.168164
AFN 81.122003
ALL 98.671748
AMD 442.507784
ANG 2.045256
AOA 1039.486014
ARS 1330.848211
AUD 1.773251
AWG 2.042657
AZN 1.926696
BAM 1.952865
BBD 2.290698
BDT 137.842863
BGN 1.955708
BHD 0.427723
BIF 3330.66653
BMD 1.13481
BND 1.482299
BOB 7.839358
BRL 6.442276
BSD 1.134515
BTN 95.879457
BWP 15.530935
BYN 3.712786
BYR 22242.270527
BZD 2.278916
CAD 1.565186
CDF 3260.308462
CHF 0.934079
CLF 0.028143
CLP 1079.987008
CNY 8.251598
CNH 8.245499
COP 4792.630546
CRC 573.048978
CUC 1.13481
CUP 30.072458
CVE 110.785823
CZK 24.956731
DJF 201.678683
DKK 7.46513
DOP 66.783843
DZD 150.490527
EGP 57.684641
ERN 17.022146
ETB 149.624398
FJD 2.563478
FKP 0.847022
GBP 0.850494
GEL 3.115014
GGP 0.847022
GHS 17.374125
GIP 0.847022
GMD 81.12789
GNF 9821.777978
GTQ 8.737025
GYD 238.076438
HKD 8.801323
HNL 29.306411
HRK 7.531772
HTG 148.219882
HUF 404.72981
IDR 18794.718596
ILS 4.130616
IMP 0.847022
INR 96.011541
IQD 1486.600734
IRR 47789.683388
ISK 145.68677
JEP 0.847022
JMD 179.600115
JOD 0.804804
JPY 162.176785
KES 146.956976
KGS 99.239097
KHR 4541.507987
KMF 490.521187
KPW 1021.285951
KRW 1617.325186
KWD 0.347728
KYD 0.945496
KZT 582.210503
LAK 24534.58653
LBP 101622.210291
LKR 339.615645
LRD 226.422901
LSL 21.061893
LTL 3.350798
LVL 0.686435
LYD 6.190405
MAD 10.510891
MDL 19.47408
MGA 5117.991652
MKD 61.511705
MMK 2382.410181
MNT 4054.992006
MOP 9.064638
MRU 45.0803
MUR 51.247972
MVR 17.478028
MWK 1970.029319
MXN 22.240501
MYR 4.896707
MZN 72.63943
NAD 21.061928
NGN 1819.134185
NIO 41.638687
NOK 11.795711
NPR 153.412255
NZD 1.911269
OMR 0.436821
PAB 1.134515
PEN 4.160783
PGK 4.57385
PHP 63.284908
PKR 318.938443
PLN 4.283884
PYG 9086.585797
QAR 4.132407
RON 4.977387
RSD 117.152104
RUB 93.053547
RWF 1608.025374
SAR 4.25663
SBD 9.488482
SCR 16.141929
SDG 681.459659
SEK 10.964112
SGD 1.481613
SHP 0.891782
SLE 25.81704
SLL 23796.374013
SOS 648.542066
SRD 41.814301
STD 23488.270048
SVC 9.926733
SYP 14754.126111
SZL 21.0621
THB 37.895855
TJS 11.957742
TMT 3.983182
TND 3.374952
TOP 2.657841
TRY 43.675756
TTD 7.684588
TWD 36.35647
TZS 3052.637913
UAH 47.063537
UGX 4155.901413
USD 1.13481
UYU 47.736584
UZS 14690.11156
VES 98.215637
VND 29510.726789
VUV 136.641768
WST 3.141606
XAF 654.984298
XAG 0.034741
XAU 0.000343
XCD 3.06688
XDR 0.813352
XOF 652.515286
XPF 119.331742
YER 278.085629
ZAR 21.093111
ZMK 10214.64531
ZMW 31.568119
ZWL 365.408267
  • RBGPF

    -0.4500

    63

    -0.71%

  • CMSC

    -0.2300

    22.01

    -1.04%

  • NGG

    -0.0400

    73

    -0.05%

  • RIO

    -1.4800

    59.4

    -2.49%

  • RELX

    0.8400

    54.63

    +1.54%

  • BTI

    0.6900

    43.55

    +1.58%

  • GSK

    0.8800

    39.85

    +2.21%

  • RYCEF

    -0.2500

    10

    -2.5%

  • SCS

    -0.0900

    9.92

    -0.91%

  • CMSD

    -0.0500

    22.3

    -0.22%

  • JRI

    -0.0200

    12.91

    -0.15%

  • BCC

    -1.2200

    93.28

    -1.31%

  • BCE

    0.3300

    22.25

    +1.48%

  • VOD

    0.1800

    9.76

    +1.84%

  • AZN

    0.0800

    71.79

    +0.11%

  • BP

    -0.6100

    27.46

    -2.22%

Scientists observe 'negative time' in quantum experiments
Scientists observe 'negative time' in quantum experiments / Photo: Cole BURSTON - AFP/File

Scientists observe 'negative time' in quantum experiments

Scientists have long known that light can sometimes appear to exit a material before entering it -- an effect dismissed as an illusion caused by how waves are distorted by matter.

Text size:

Now, researchers at the University of Toronto, through innovative quantum experiments, say they have demonstrated that "negative time" isn't just a theoretical idea -- it exists in a tangible, physical sense, deserving closer scrutiny.

The findings, yet to be published in a peer-reviewed journal, have attracted both global attention and skepticism.

The researchers emphasize that these perplexing results highlight a peculiar quirk of quantum mechanics rather than a radical shift in our understanding of time.

"This is tough stuff, even for us to talk about with other physicists. We get misunderstood all the time," said Aephraim Steinberg, a University of Toronto professor specializing in experimental quantum physics.

While the term "negative time" might sound like a concept lifted from science fiction, Steinberg defends its use, hoping it will spark deeper discussions about the mysteries of quantum physics.

- Laser experiments -

Years ago, the team began exploring interactions between light and matter.

When light particles, or photons, pass through atoms, some are absorbed by the atoms and later re-emitted. This interaction changes the atoms, temporarily putting them in a higher-energy or "excited" state before they return to normal.

In research led by Daniela Angulo, the team set out to measure how long these atoms stayed in their excited state. "That time turned out to be negative," Steinberg explained -- meaning a duration less than zero.

To visualize this concept, imagine cars entering a tunnel: before the experiment, physicists recognized that while the average entry time for a thousand cars might be, for example, noon, the first cars could exit a little sooner, say 11:59 am. This result was previously dismissed as meaningless.

What Angulo and colleagues demonstrated was akin to measuring carbon monoxide levels in the tunnel after the first few cars emerged and finding that the readings had a minus sign in front of them.

- Relativity intact -

The experiments, conducted in a cluttered basement laboratory bristling with wires and aluminum-wrapped devices, took over two years to optimize. The lasers used had to be carefully calibrated to avoid distorting the results.

Still, Steinberg and Angulo are quick to clarify: no one is claiming time travel is a possibility. "We don't want to say anything traveled backward in time," Steinberg said. "That's a misinterpretation."

The explanation lies in quantum mechanics, where particles like photons behave in fuzzy, probabilistic ways rather than following strict rules.

Instead of adhering to a fixed timeline for absorption and re-emission, these interactions occur across a spectrum of possible durations -- some of which defy everyday intuition.

Critically, the researchers say, this doesn't violate Einstein's theory of special relativity, which dictates that nothing can travel faster than light. These photons carried no information, sidestepping any cosmic speed limits.

- A divisive discovery -

The concept of "negative time" has drawn both fascination and skepticism, particularly from prominent voices in the scientific community.

German theoretical physicist Sabine Hossenfelder, for one, criticized the work in a YouTube video viewed by over 250,000 people, noting, "The negative time in this experiment has nothing to do with the passage of time -- it's just a way to describe how photons travel through a medium and how their phases shift."

Angulo and Steinberg pushed back, arguing that their research addresses crucial gaps in understanding why light doesn’t always travel at a constant speed.

Steinberg acknowledged the controversy surrounding their paper's provocative headline but pointed out that no serious scientist has challenged the experimental results.

"We've made our choice about what we think is a fruitful way to describe the results," he said, adding that while practical applications remain elusive, the findings open new avenues for exploring quantum phenomena.

"I'll be honest, I don’t currently have a path from what we've been looking at toward applications," he admitted. "We're going to keep thinking about it, but I don't want to get people's hopes up."

C.Novotny--TPP