The Prague Post - The scientist rewriting DNA, and the future of medicine

EUR -
AED 4.313468
AFN 77.598705
ALL 96.698386
AMD 447.792527
ANG 2.102883
AOA 1077.044807
ARS 1692.205144
AUD 1.764354
AWG 2.114155
AZN 2.001365
BAM 1.955767
BBD 2.361861
BDT 143.307608
BGN 1.955767
BHD 0.442093
BIF 3466.042156
BMD 1.17453
BND 1.514475
BOB 8.102865
BRL 6.365607
BSD 1.17268
BTN 106.04923
BWP 15.537741
BYN 3.457042
BYR 23020.795811
BZD 2.358461
CAD 1.618445
CDF 2630.948518
CHF 0.934916
CLF 0.027253
CLP 1069.11676
CNY 8.28573
CNH 8.284609
COP 4466.125466
CRC 586.590211
CUC 1.17453
CUP 31.125056
CVE 110.26316
CZK 24.276491
DJF 208.826515
DKK 7.472132
DOP 74.548756
DZD 152.289758
EGP 55.571073
ERN 17.617956
ETB 183.229742
FJD 2.668303
FKP 0.879936
GBP 0.878351
GEL 3.175767
GGP 0.879936
GHS 13.461775
GIP 0.879936
GMD 85.741137
GNF 10198.829794
GTQ 8.98185
GYD 245.335906
HKD 9.138141
HNL 30.873485
HRK 7.537789
HTG 153.707435
HUF 385.234681
IDR 19536.845016
ILS 3.785271
IMP 0.879936
INR 106.394254
IQD 1536.174363
IRR 49474.161194
ISK 148.465122
JEP 0.879936
JMD 187.756867
JOD 0.832789
JPY 182.950774
KES 151.217476
KGS 102.713135
KHR 4694.921647
KMF 492.719958
KPW 1057.060817
KRW 1732.32708
KWD 0.360233
KYD 0.977284
KZT 611.589793
LAK 25422.575728
LBP 105012.44747
LKR 362.353953
LRD 206.976546
LSL 19.78457
LTL 3.468083
LVL 0.710462
LYD 6.369894
MAD 10.78842
MDL 19.823669
MGA 5194.913303
MKD 61.548973
MMK 2466.385496
MNT 4167.553805
MOP 9.403343
MRU 46.930217
MUR 53.93488
MVR 18.092159
MWK 2033.466064
MXN 21.157878
MYR 4.812408
MZN 75.064681
NAD 19.78457
NGN 1706.088063
NIO 43.15928
NOK 11.906572
NPR 169.679168
NZD 2.023657
OMR 0.451612
PAB 1.17268
PEN 3.948134
PGK 5.054916
PHP 69.43241
PKR 328.640215
PLN 4.225315
PYG 7876.868545
QAR 4.273829
RON 5.092651
RSD 117.378041
RUB 93.579038
RWF 1706.771516
SAR 4.407079
SBD 9.603843
SCR 17.649713
SDG 706.484352
SEK 10.887784
SGD 1.517615
SHP 0.881202
SLE 28.335591
SLL 24629.319496
SOS 668.988835
SRD 45.275842
STD 24310.407882
STN 24.499591
SVC 10.260829
SYP 12986.886804
SZL 19.77767
THB 37.109332
TJS 10.77682
TMT 4.122602
TND 3.428143
TOP 2.827988
TRY 50.011936
TTD 7.957867
TWD 36.804032
TZS 2902.351563
UAH 49.548473
UGX 4167.930442
USD 1.17453
UYU 46.019232
UZS 14127.764225
VES 314.116117
VND 30897.196663
VUV 142.580188
WST 3.259869
XAF 655.946053
XAG 0.018954
XAU 0.000273
XCD 3.174228
XCG 2.113465
XDR 0.815786
XOF 655.946053
XPF 119.331742
YER 280.129715
ZAR 19.820741
ZMK 10572.187233
ZMW 27.059548
ZWL 378.198309
  • RBGPF

    0.0000

    81.17

    0%

  • SCS

    0.0200

    16.14

    +0.12%

  • NGG

    0.2400

    74.93

    +0.32%

  • RIO

    -1.0800

    75.66

    -1.43%

  • GSK

    -0.0700

    48.81

    -0.14%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • RYCEF

    -0.2500

    14.6

    -1.71%

  • BP

    -0.2700

    35.26

    -0.77%

  • BTI

    -1.2700

    57.1

    -2.22%

  • RELX

    0.1000

    40.38

    +0.25%

  • AZN

    -0.4600

    89.83

    -0.51%

  • BCE

    0.3100

    23.71

    +1.31%

  • BCC

    0.2500

    76.51

    +0.33%

  • VOD

    0.0500

    12.59

    +0.4%

  • CMSD

    -0.1500

    23.25

    -0.65%

  • JRI

    -0.0200

    13.7

    -0.15%

The scientist rewriting DNA, and the future of medicine
The scientist rewriting DNA, and the future of medicine / Photo: Casey ATKINS - Broad Institute of Harvard and MIT,/AFP

The scientist rewriting DNA, and the future of medicine

A revolution is underway in gene editing -- and at its forefront is David Liu, an American molecular biologist whose pioneering work is rewriting the building blocks of life with unprecedented precision.

Text size:

A professor at the Broad Institute of MIT and Harvard, Liu was awarded a Breakthrough Prize in Life Sciences on Saturday for developing two transformative technologies: one already improving the lives of patients with severe genetic diseases, the other poised to reshape medicine in the years ahead.

He spoke with AFP ahead of the Los Angeles ceremony for the prestigious Silicon Valley-founded award.

He will receive $3 million for his work on "base editing" and "prime editing," and plans to donate most of it to support his charitable foundation.

"The ability to change a DNA sequence of our choosing into a new sequence of our choosing is a fundamentally very powerful capability," the 51-year-old said, foreseeing uses not just in human medicine but areas like developing more nutritious or disease-resistant crops.

- Correcting the code -

DNA is made up of four chemical "letters" -- the nucleotide bases A, G, T and C. Mutations in this sequence cause thousands of human diseases, yet until recently, gene editing could only fix a limited number of them.

Even CRISPR-Cas9, the groundbreaking technology that earned a Nobel Prize in 2020, has major limitations.

It cuts both strands of the DNA helix, making it most useful to disrupt rather than correct genes, while the process can introduce new errors.

"Being able to use genome editing to treat genetic diseases requires, in most cases, ways to correct a DNA misspelling, not simply to disrupt a gene," Liu said.

That insight led his lab to develop base editing, which uses the Cas9 protein -- disabled so it can no longer cut both DNA strands -- to find a target DNA sequence and another enzyme to convert one letter to another -- for example, C to T or G to A.

Reversing the change -- from T to C or A to G -- was tougher. Liu's team overcame the challenge by engineering entirely new enzymes.

These base editors can now correct about 30 percent of the mutations that cause genetic diseases. The technology is already in at least 14 clinical trials.

In one of them, Beam Therapeutics -- which Liu co-founded -- announced it had treated patients of AATD, a rare genetic disorder affecting the lungs and liver, with a single drug infusion.

While traditional gene therapies often disrupt faulty genes or work around them, base editing repairs the mutation itself.

"This was the first time that humans have corrected a mutation that causes a genetic disease in a patient," Liu said.

- Cystic fibrosis hope -

Base editing, quickly dubbed "CRISPR 2.0," can't fix every mutation.

About 70 percent of the roughly 100,000 known disease-causing mutations remain out of its reach, including those caused by missing or extra letters.

To expand the toolkit, Liu's lab introduced prime editing in 2019 -- a method capable of replacing entire sections of faulty DNA with corrected sequences.

If CRISPR is like scissors that cut DNA, and base editors are like using a pencil to correct individual letters, then prime editing is the equivalent of a word processor's "find and replace" function.

Creating this tool required a series of breakthroughs Liu's team describes as "small miracles." The result is, he said, "the most versatile way we know of to edit the human genome."

Among the targets Liu and his team have already pursued with prime editing: cystic fibrosis, a common genetic disease usually caused by three missing DNA letters that causes thick mucus buildup in the lungs and digestive system.

Liu's lab has made much of its work freely accessible, sharing DNA blueprints through a nonprofit library used by tens of thousands of labs worldwide.

"The science we create -- which is ultimately funded by society, through governments and donors -- ultimately goes back to benefit society."

This year's Breakthrough Prize awards come at a fraught moment for US science, as President Donald Trump's government strips funding for institutions like the National Institutes of Health (NIH).

"The NIH is a treasure, not just for this country but for the world," said Liu. "Trying to dismantle the heart of what supports science in this country is like burning your seed corn."

K.Pokorny--TPP