The Prague Post - Webb Telescope: What will scientists learn?

EUR -
AED 4.324654
AFN 80.298122
ALL 97.030523
AMD 450.422441
ANG 2.107608
AOA 1079.838334
ARS 1675.672611
AUD 1.781671
AWG 2.119639
AZN 2.004139
BAM 1.963373
BBD 2.364295
BDT 143.262001
BGN 1.956463
BHD 0.443952
BIF 3502.443693
BMD 1.177577
BND 1.507454
BOB 8.163211
BRL 6.385312
BSD 1.173888
BTN 103.27734
BWP 15.71825
BYN 3.969056
BYR 23080.515289
BZD 2.360891
CAD 1.624592
CDF 3385.534829
CHF 0.932688
CLF 0.029133
CLP 1142.885981
CNY 8.395949
CNH 8.384942
COP 4639.654604
CRC 593.651492
CUC 1.177577
CUP 31.205799
CVE 111.058288
CZK 24.342402
DJF 209.039406
DKK 7.467871
DOP 74.952893
DZD 152.443248
EGP 56.8154
ERN 17.66366
ETB 167.451166
FJD 2.639246
FKP 0.872758
GBP 0.867445
GEL 3.18477
GGP 0.872758
GHS 14.260841
GIP 0.872758
GMD 85.375531
GNF 10179.170945
GTQ 9.025816
GYD 246.271587
HKD 9.172415
HNL 30.805455
HRK 7.534608
HTG 153.598564
HUF 393.220117
IDR 19397.053461
ILS 3.914002
IMP 0.872758
INR 103.778118
IQD 1542.626277
IRR 49517.126111
ISK 143.416817
JEP 0.872758
JMD 188.416775
JOD 0.834887
JPY 173.068727
KES 152.138686
KGS 102.978517
KHR 4716.197477
KMF 493.993732
KPW 1059.806487
KRW 1633.900396
KWD 0.359408
KYD 0.978274
KZT 627.688846
LAK 25472.954828
LBP 105121.663847
LKR 354.458995
LRD 235.368301
LSL 20.619427
LTL 3.47708
LVL 0.712305
LYD 6.35097
MAD 10.627581
MDL 19.603514
MGA 5272.602315
MKD 61.602081
MMK 2472.679273
MNT 4233.329926
MOP 9.423942
MRU 47.026549
MUR 53.956648
MVR 18.136836
MWK 2045.451821
MXN 21.938859
MYR 4.957013
MZN 75.306106
NAD 20.61953
NGN 1774.126481
NIO 43.197406
NOK 11.745757
NPR 165.243343
NZD 1.978507
OMR 0.452761
PAB 1.1771
PEN 4.135711
PGK 4.901669
PHP 66.845206
PKR 333.090844
PLN 4.248895
PYG 8461.285683
QAR 4.2875
RON 5.073706
RSD 117.163064
RUB 97.11657
RWF 1700.966695
SAR 4.417821
SBD 9.692158
SCR 17.451443
SDG 707.134003
SEK 11.002941
SGD 1.509182
SHP 0.925391
SLE 27.484499
SLL 24693.205026
SOS 672.986685
SRD 46.061526
STD 24373.472812
STN 24.526917
SVC 10.271272
SYP 15310.807647
SZL 20.618996
THB 37.258367
TJS 11.087368
TMT 4.121521
TND 3.415429
TOP 2.758008
TRY 48.602336
TTD 7.965742
TWD 35.746301
TZS 2943.757201
UAH 48.429548
UGX 4130.916792
USD 1.177577
UYU 47.272345
UZS 14660.837842
VES 180.801323
VND 31072.143708
VUV 141.866555
WST 3.268328
XAF 656.677659
XAG 0.028479
XAU 0.000323
XCD 3.182461
XCG 2.115622
XDR 0.816696
XOF 656.677659
XPF 119.331742
YER 282.206373
ZAR 20.576396
ZMK 10599.611279
ZMW 28.143886
ZWL 379.179414
  • RBGPF

    1.8400

    77.27

    +2.38%

  • CMSC

    -0.0600

    24.17

    -0.25%

  • BCC

    -1.0000

    89.02

    -1.12%

  • SCS

    0.0800

    17.22

    +0.46%

  • CMSD

    -0.0700

    24.39

    -0.29%

  • JRI

    0.1100

    13.73

    +0.8%

  • RIO

    -0.2500

    63.72

    -0.39%

  • NGG

    0.3200

    70.42

    +0.45%

  • GSK

    -0.4500

    40.05

    -1.12%

  • AZN

    -0.1400

    81.56

    -0.17%

  • RELX

    0.2600

    47.31

    +0.55%

  • RYCEF

    0.0800

    14.69

    +0.54%

  • BCE

    -0.3300

    24.39

    -1.35%

  • BTI

    0.1700

    56.19

    +0.3%

  • BP

    -0.0200

    33.91

    -0.06%

  • VOD

    -0.0100

    11.8

    -0.08%

Webb Telescope: What will scientists learn?
Webb Telescope: What will scientists learn? / Photo: Handout - NASA/AFP

Webb Telescope: What will scientists learn?

The James Webb Space Telescope's first images aren't just breathtaking -- they contain a wealth of scientific insights and clues that researchers are eager to pursue.

Text size:

Here are some of the things scientists now hope to learn.

- Into the deep -

Webb's first image, released Monday, delivered the deepest and sharpest infrared image of the distant universe so far, "Webb's First Deep Field."

The white circles and ellipses are from the galaxy cluster in the foreground called SMACS 0723, as it appeared more than 4.6 billion years ago -- roughly when our Sun formed too.

The reddish arcs are from light from ancient galaxies that has traveled more than 13 billion years, bending around the foreground cluster, which acts as a gravitational lens.

NASA astrophysicist Amber Straughn said she was struck by "the astounding detail that you can see in some of these galaxies."

"They just pop out! There is so much more detail, it's like seeing in high-def."

Plus, added NASA astrophysicist Jane Rigby, the image can teach us more about mysterious dark matter, which is thought to comprise 85 percent of matter in the universe -- and is the main cause of the cosmic magnifying effect.

The composite image, which required a 12.5 hour exposure time, is considered a practice run. Given longer exposure time, Webb should break all-time distance records by gazing back to the first few hundred million years after the Big Bang, 13.8 billion years ago.

- The hunt for habitable planets -

Webb captured the signature of water, along with previously undetected evidence of clouds and haze, in the atmosphere surrounding a hot, puffy gas giant planet called WASP-96 b that orbits a distant star like our Sun.

The telescope achieved this by analyzing starlight filtered through the planet's atmosphere as it moves across the star, to the unfiltered starlight detected when the planet is beside the star -- a technique called spectroscopy that no other instrument can do at the same detail.

WASP-96 b is one of more than 5,000 confirmed exoplanets in the Milky Way. But what really excites astronomers is the prospect of pointing Webb at smaller, rocky worlds, like our own Earth, to search for atmospheres and bodies of liquid water that could support life.

- Death of a star -

Webb's cameras captured a stellar graveyard, in the Southern Ring Nebula, revealing the dim, dying star at its center in clear detail for the first time, and showing that it is cloaked in dust.

Astronomers will use Webb to delve deeper into specifics about "planetary nebulae" like these, which spew out clouds of gas and dust.

These nebulae will eventually also lead to rebirth.

The gas and cloud ejection stops after some tens of thousands of years, and once the material is scattered in space, new stars can form.

- A cosmic dance -

Stephan's Quintet, a grouping of five galaxies, is located in the constellation Pegasus.

Webb was able to pierce through the clouds of dust and gas at the center of the galaxy to glean new insights, such as the velocity and composition of outflows of gas near its supermassive black hole.

Four of the galaxies are close together and locked in a "cosmic dance" of repeated close encounters.

By studying it, "you learn how the galaxies collide and merge," said cosmologist John Mather, adding our own Milky Way was probably assembled out of 1,000 smaller galaxies.

Understanding the black hole better will also give us greater insights into Sagittarius A*, the black hole at the center of the Milky Way, which is shrouded in dust.

- Stellar nursey -

Perhaps the most beautiful image is that of the "Cosmic Cliffs" from the Carina Nebula, a stellar nursery.

Here, for the first time, Webb has revealed previously invisible regions of star formation, which will tell us more about why stars form with certain mass, and what determines the number that form in a certain region.

They may look like mountains, but the tallest of the craggy peaks are seven light years high, and the yellow structures are made from huge hydrocarbon molecules, said Webb project scientist Klaus Pontoppidan.

In addition to being the stuff of stars, nebular material could also be where we come from.

"This may be the way that the universe is transporting carbon, the carbon that we're made of, to planets that may be habitable for life," he said.

- The great unknown -

Perhaps most exciting of all is journeying into the unknown, said Straughn.

Hubble played a key role in discovering that dark energy is causing the universe to expand at an ever-growing rate, "so it's hard to imagine what we might learn with this 100 times more powerful instrument."

K.Pokorny--TPP