The Prague Post - Webb begins hunt for the first stars and habitable worlds

EUR -
AED 4.232441
AFN 81.740055
ALL 97.896113
AMD 444.691492
ANG 2.062484
AOA 1056.813869
ARS 1342.056404
AUD 1.776308
AWG 2.074444
AZN 1.956078
BAM 1.955323
BBD 2.326232
BDT 140.905618
BGN 1.955323
BHD 0.434094
BIF 3431.062798
BMD 1.152469
BND 1.480139
BOB 7.961057
BRL 6.353679
BSD 1.152119
BTN 99.741662
BWP 15.528211
BYN 3.77048
BYR 22588.388285
BZD 2.314335
CAD 1.568798
CDF 3315.652809
CHF 0.938692
CLF 0.028263
CLP 1084.565411
CNY 8.284524
CNH 8.272994
COP 4705.151912
CRC 581.658072
CUC 1.152469
CUP 30.540423
CVE 110.238101
CZK 24.820493
DJF 205.169937
DKK 7.460621
DOP 68.323329
DZD 150.218346
EGP 58.324768
ERN 17.287032
ETB 158.433841
FJD 2.603946
FKP 0.856617
GBP 0.852891
GEL 3.134107
GGP 0.856617
GHS 11.867104
GIP 0.856617
GMD 82.397327
GNF 9982.564189
GTQ 8.854839
GYD 241.041184
HKD 9.045782
HNL 30.090658
HRK 7.536226
HTG 151.213103
HUF 402.706787
IDR 18944.627711
ILS 4.02101
IMP 0.856617
INR 99.781324
IQD 1509.331713
IRR 48547.747798
ISK 143.032346
JEP 0.856617
JMD 183.665184
JOD 0.817086
JPY 168.150942
KES 148.913664
KGS 100.783665
KHR 4617.873209
KMF 492.679182
KPW 1037.22191
KRW 1582.54678
KWD 0.35307
KYD 0.960166
KZT 602.063093
LAK 24856.934745
LBP 103231.010956
LKR 346.215521
LRD 230.423775
LSL 20.801924
LTL 3.402941
LVL 0.697117
LYD 6.280468
MAD 10.515734
MDL 19.811166
MGA 5148.743673
MKD 61.51499
MMK 2419.843546
MNT 4129.307883
MOP 9.315527
MRU 45.542887
MUR 52.575707
MVR 17.753809
MWK 1997.812521
MXN 22.097425
MYR 4.900878
MZN 73.711309
NAD 20.801924
NGN 1786.453793
NIO 42.399654
NOK 11.646562
NPR 159.58706
NZD 1.920942
OMR 0.442592
PAB 1.152119
PEN 4.13729
PGK 4.816825
PHP 65.888911
PKR 326.91723
PLN 4.268687
PYG 9195.756175
QAR 4.202075
RON 5.030178
RSD 117.201402
RUB 90.277972
RWF 1663.694048
SAR 4.324296
SBD 9.612084
SCR 16.998874
SDG 692.060182
SEK 11.137908
SGD 1.480934
SHP 0.90566
SLE 25.872695
SLL 24166.698516
SOS 658.439336
SRD 44.773875
STD 23853.777129
SVC 10.08154
SYP 14984.226914
SZL 20.797925
THB 37.81823
TJS 11.377324
TMT 4.033641
TND 3.410568
TOP 2.699196
TRY 45.655394
TTD 7.830089
TWD 34.101326
TZS 3058.953595
UAH 48.287418
UGX 4152.986644
USD 1.152469
UYU 47.108505
UZS 14469.469354
VES 118.193399
VND 30112.280781
VUV 138.18911
WST 3.179212
XAF 655.796981
XAG 0.032012
XAU 0.000342
XCD 3.114605
XDR 0.815601
XOF 655.796981
XPF 119.331742
YER 279.71091
ZAR 20.761701
ZMK 10373.606596
ZMW 26.643499
ZWL 371.09448
  • CMSC

    0.0900

    22.314

    +0.4%

  • CMSD

    0.0250

    22.285

    +0.11%

  • RBGPF

    0.0000

    69.04

    0%

  • SCS

    0.0400

    10.74

    +0.37%

  • RELX

    0.0300

    53

    +0.06%

  • RIO

    -0.1400

    59.33

    -0.24%

  • GSK

    0.1300

    41.45

    +0.31%

  • NGG

    0.2700

    71.48

    +0.38%

  • BP

    0.1750

    30.4

    +0.58%

  • BTI

    0.7150

    48.215

    +1.48%

  • BCC

    0.7900

    91.02

    +0.87%

  • JRI

    0.0200

    13.13

    +0.15%

  • VOD

    0.0100

    9.85

    +0.1%

  • BCE

    -0.0600

    22.445

    -0.27%

  • RYCEF

    0.1000

    12

    +0.83%

  • AZN

    -0.1200

    73.71

    -0.16%

Webb begins hunt for the first stars and habitable worlds
Webb begins hunt for the first stars and habitable worlds / Photo: Jonathan WALTER - AFP

Webb begins hunt for the first stars and habitable worlds

The first stunning images from the James Webb Space Telescope were revealed this week, but its journey of cosmic discovery has only just begun.

Text size:

Here is a look at two early projects that will take advantage of the orbiting observatory's powerful instruments.

- The first stars and galaxies -

One of the great promises of the telescope is its ability to study the earliest phase of cosmic history, shortly after the Big Bang 13.8 billion years ago.

The more distant objects are from us, the longer it takes for their light to reach us, and so to gaze back into the distant universe is to look back in the deep past.

"We're going to look back into that earliest time to see the first galaxies that formed in the history of the universe," explained Space Telescope Science Institute astronomer Dan Coe, who specializes in the early universe.

Astronomers have so far gone back 97 percent of the way back to the Big Bang, but "we just see these tiny red specks when we look at these galaxies that are so far away."

"With Webb, we'll finally be able to see inside these galaxies and see what they're made of."

While today's galaxies are shaped like spirals or ellipticals, the earliest building blocks were "clumpy and irregular," and Webb should reveal older redder stars in them, more like our Sun, that were invisible to the Hubble Space Telescope.

Coe has two Webb projects coming up -- observing one of the most distant galaxies known, MACS0647-JD, which he found in 2013, and Earendel, the most distant star ever detected, which was found in March of this year.

While the public has been enticed by Webb's stunning pictures, which are shot in infrared because light from the far cosmos has stretched into these wavelengths as the universe expanded, scientists are equally keen on spectroscopy.

Analyzing the light spectrum of an object reveals its properties, including temperature, mass, and chemical composition -- effectively, forensic science for astronomy.

Science doesn't yet know what the earliest stars, which probably started forming 100 million years after the Big Bang, will look like.

"We might see things that are very different," said Coe -- so-called "Population III" stars that are theorized to have been much more massive than our own Sun, and "pristine," meaning they were made up solely of hydrogen and helium.

These eventually exploded in supernovae, contributing to the cosmic chemical enrichment that created the stars and planets we see today.

Some are doubtful these pristine Population III stars will ever be found -- but that won't stop the astronomical community from trying.

- Anyone out there? -

Astronomers won time on Webb based on a competitive selection process, open to all regardless of how advanced they are in their careers.

Olivia Lim, a doctoral student at the University of Montreal, is only 25 years old. "I was not even born when people started talking about this telescope," she told AFP.

Her goal: to observe the roughly Earth-sized rocky planets revolving around a star named Trappist-1. They are so close to each other that from the surface of one, you could see the others appearing clearly in the sky.

"The Trappist-1 system is unique," explains Lim. "Almost all of the conditions there are favorable for the search for life outside our solar system."

In addition, three of Trappist-1's seven planets are in the Goldilocks "habitable zone," neither too close nor too far from their star, permitting the right temperatures for liquid water to exist on their surface.

The system is "only" 39 light year away -- and we can see the planets transit in front of their star.

This makes it possible to observe the drop in luminosity that crossing the star produces, and use spectroscopy to infer planetary properties.

It's not yet known if these planets have an atmosphere, but that's what Lim is looking to find out. If so, the light passing through these atmospheres will be "filtered" through the molecules it contains, leaving signatures for Webb.

The jackpot for her would be to detect the presence of water vapor, carbon dioxide and ozone.

Trappist-1 is such a prime target that several other science teams have also been granted time to observe them.

Finding traces of life there, if they exist, will still take time, according to Lim. But "everything we're doing this year are really important steps to get to that ultimate goal."

E.Soukup--TPP